Abstract
In this paper, we present a nonlocal version of the OSV model by using the new results of Bartholdi-Schick-Smale-Smale. We compare this model with other nonlocal models, both theoretically and in computer experiments.
Similar content being viewed by others
References
Aubert, G., Aujol, J.-F.: Modeling very oscillating signals, application to image processing. Appl. Math. Optim. 51 (2005)
Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63, 85–104 (2005)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations, 2nd edn. Applied Mathematical Sciences, vol. 147. Springer, Berlin (2006)
Aujol, J.F., Gilboa, G.: Implementation and parameter selection for BV-Hilbert space regularizations. UCLA CAM-Reports 04-66 (2004)
Aujol, J.-F., Gilboa, G.: Constrained and SNR-based solutions for TV-Hilbert space image denoising. J. Math. Imaging Vis. 26, 217–237 (2006)
Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition–modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136
Bartholdi, L., Schick, T., Smale, N., Smale, S.: Hodge theory on metric spaces. (2009). arXiv:0912.0284v1
Bresson, X., Chan, T.F.: Nonlocal unsupervised variational image segmentation models. UCLA CAM Report 08-67 (2008)
Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)
Chambolle, A., Lions, P.L.: Image recovery via total variational minimization and related problems. Numer. Math. 76, 167–188 (1997)
Chan, T.F., Marquina, A., Mulet, P.: High-order total variation based image restoration. SIAM J. Sci. Comput. 22, 503–516 (2000)
Chan, T.F., Shen, J.: Image Processing and Analysis. Variational, PDE, Wavelet, and Stochastic Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2005)
Garnett, J.B., Le, T.M., Meyer, Y., Vese, L.A.: Image decompositions using bounded variation and generalized homogeneous Besov spaces. Appl. Comput. Harmon. Anal. 23, 25–56 (2007)
Gilboa, G., Darbon, J., Osher, S., Chan, T.: Nonlocal convex functionals for image regularization. Technical Report 06-57, UCLA CAM Report (2006)
Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6(2), 595–630 (2007)
Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)
Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. UCLA CAM Report 06-47 (2006)
Jin, Y., Jost, J., Wang, G.: A new nonlocal variational setting for image processing. Preprint (2010)
Jost, J.: Equilibrium maps between metric spaces. Calc. Var. 2, 17305 (1994)
Jung, M., Vese, L.A.: Nonlocal Variational Image Deblurring Models in the Presence of Gaussian or Impulse Noise. Lecture Notes in Computer Science, vol. 5567, pp. 401–412. Springer, Berlin (2009)
Kimmel, R., Malladi, R., Sochen, N.: Images as embedding maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)
Kimmel, R., Sochen, N., Malladi, R.: From high energy physics to low level vision. In: First International Conference on Scal-Space Theory in Computer Vision, pp. 236–247 (1997)
Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005)
Le, Triet M., Vese, Luminita A.: Image decomposition and restoration using total variation minimization and the H −1 norm. Multiscale Model. Simul. 4(2), 390–423 (2005)
Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42, 185–197 (2010)
Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 22. American Mathematical Society, Providence (2001)
Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H −1 norm. Multiscale Model. Simul. 1, 349–370 (2003)
Peyré, G.: Image processing with nonlocal spectral bases. Multiscale Model. Simul. 7(2), 703–730 (2008)
Peyré, G., Bougleux, S., Cohen, L.: Nonlocal regularization of inverse problems. In: ECCV 8: European Conference on Computer Vision, p. 578. Springer, Berlin (2008)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica, D 60, 259–268 (1992)
Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19, 553–572 (2003)
Schönlieb, C.B.: Total variation minimization with an H −1 constraint. Preprint
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Yuan, J., Schnörr, C., Steidl, G.: Convex Hodge decomposition and regularization of image flows. J. Math. Imaging Vis. 33(2), 16977 (2009)
Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. UCLA CAM Report (2009)
Zhang, X., Chan, T.: Wavelet inpainting by nonlocal total variation. Inverse Probl. Imaging 4, 191–210 (2010)
Zhou, D., Schölkopf, B.: A regularization framework for learning from graph data. In: ICML Workshop on Stat. Relational Learning and Its Connections to Other Fields (2004)
Zhou, D., Schölkopf, B.: Regularization on discrete spaces. In: Pattern Recognition, Proceedings of the 27th DAGM Symposium, Berlin, Germany, pp. 361–369 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jin, Y., Jost, J. & Wang, G. A Nonlocal Version of the Osher-Solé-Vese Model. J Math Imaging Vis 44, 99–113 (2012). https://doi.org/10.1007/s10851-011-0313-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-011-0313-z