Real-Time Performance Analysis of PIDD2 Controller for Nonlinear Twin Rotor TITO Aerodynamical System | Journal of Intelligent & Robotic Systems
Skip to main content

Real-Time Performance Analysis of PIDD2 Controller for Nonlinear Twin Rotor TITO Aerodynamical System

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Twin-rotor two-input two-output (TITO) aerodynamical system (TRAS) is a highly non-linear system with a cross-coupling effect. The objective of the controller design in TRAS is to track the trajectory of azimuth and pitch angles, reach the desired azimuth and pitch angle positions, and stabilize TRAS in the presence of significant cross-coupling. The coupling effect between the main rotor and tail rotor is a severe issue for the controller design. So, this paper proposes a proportional integral derivative double derivative (PIDD2) controller design for TRAS, first time. Further, the tuning of PIDD2 controller is carried out via a modified grey wolf optimizer (MGWO). Besides, the real-time hardware-in-loop (HIL) implementation of the PIDD2 controller with the TRAS laboratory prototype setup is carried out, first-time. Moreover, It is tested under external disturbances for robustness and effectiveness analyses. In addition, this paper performs both simulations as well as hardware results analyses. These analyses reveal that the experimental results are found to match closely with simulation results. Finally, the efficacy of the proposed control design approach is presented by comparing it with the recently published controldesign schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

α h :

horizontal position (azimuth position) of TRAS beam (in rad)

Ω h :

angular velocity (azimuth velocity) of TRAS beam (in rad/s)

U h :

horizontal DC motor PWM control input

ω h :

rotational speed of tail rotor (in rad/s); nonlinear function ωh = ω(Uh,t)

F h :

aerodynamic force from tail rotor (in N); nonlinear function Fh = Fh(ωh)

l h :

effective arm of aerodynamic force from tail rotor (in m) ; lh = lh(αv)

J h :

non-linear function of moment of inertia with respect to vertical axis (in kgm2)

M h :

horizontal turning torque (in Nm)

K h :

horizontal angular momentum (in Nm-s)

f h :

frictional coefficient in a horizontal plane

α v :

vertical position (pitch position) of TRAS beam (in rad)

Ω v :

angular velocity (pitch velocity) of TRAS beam (in rad/s)

U v :

vertical DC motor PWM control input

ω v :

rotational speed of main rotor (in rad/s); nonlinear function \(\omega _{v}=H_{v}\left (U_{v},t\right )\)

F v :

aerodynamic force from main rotor (in N); nonlinear function Fv = Fv(ωv)

l v :

arm of aerodynamic force from main rotor

M v :

vertical turning torque (in Nm)

K v :

vertical angular momentum (in Nm-s)

f v :

frictional coefficient in a vertical plane

M v1 :

return torque corresponding to the forces of gravity

g :

gravitational acceleration

M v2 :

moment of the propulsive force produced by the main rotor

a 1, a 2 :

constant

M v3 :

moment of the centrifugal forces corresponding to the motion of the beam around the vertical axis

M v4 :

moment of friction depending on the angular velocity of beam around the horizontal axis

M v5 :

cross moment from Uh

M v6 :

damping torque from rotating propeller

I h :

moment of inertia of the tail rotor

I v :

moment of inertia of the main rotor

J v :

moment of inertia with respect to horizontal axis

m m r :

mass of the main DC-motor with main rotor

m m :

mass of the main part of the beam

m t r :

mass of the tail motor with tail rotor

m t :

mass of the tail part of the beam

m c b :

mass of the counter-weight

m b :

mass of the counter-weight beam

m m s :

mass of the main shield

m t s :

mass of the tail shield

l m :

length of the main part of the beam

l t :

length of the tail part of the beam

l b :

length of the counter-weight beam

l c b :

distance between the counter-weight and the joint

r m s :

radius of the main shield

r t s :

radius of the tail shield

References

  1. Inteco. Twin rotor aero-dynamical system (TRAS), User’s Manual version USB2 (2019)

  2. Ahmad, M., Ali, A., Choudhry, M.A.: Fixed-structure \(H_{\infty }\) controller design for two-rotor aerodynamical system (TRAS). Arab. J. Sci. Eng. 41(9), 3619–3630 (2016)

    Article  Google Scholar 

  3. Astrom, K., Hagglund, T.: PID controllers: Theory design and tuning. Research Triangle Park (1995)

  4. Cabecinhas, D., Naldi, R., Marconi, L., Silvestre, C., Cunha, R.: Robust take-off for a quadrotor vehicle. IEEE Trans. Robot. 28(3), 734–742 (2012)

    Article  Google Scholar 

  5. Dulf, E.H., Muresan, C.I., Both-Rusu, R., Dulf, F.V.: Robust auto-tuning fractional order control of an aerodynamical system. In: 2016 International Conference on Mechatronics, Control and Automation Engineering. Atlantis Press (2016)

  6. Guha, D., Roy, P.K., Banerjee, S.: Multi-verse optimisation: a novel method for solution of load frequency control problem in power system. IET Gener. Transm. Distrib. 11(14), 3601–3611 (2017)

    Article  Google Scholar 

  7. Haruna, A., Mohamed, Z., Efe, M., Basri, M.A.M.: Improved integral backstepping control of variable speed motion systems with application to a laboratory helicopter. ISA Trans. 97, 1–13 (2019)

    Article  Google Scholar 

  8. Hassan, R., Hossam, A., El-Badawy, A.: Robust h-infinity control for a bi-rotor system. In: AIAA Scitech 2020 Forum, p 1834 (2020)

  9. Hosoe, S., Tuan, H., Nguyen, T.: 2D bilinear programming for robust PID/DD controller design. Int. J. Robust Nonlinear Control. 27(3), 461–482 (2017)

    Article  MathSciNet  Google Scholar 

  10. Huba, M., Vrancic, D.: Comparing filtered pi, pid and pidd 2 control for the fotd plants. In: 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control (2018)

  11. Isaksson, A., Graebe, S.: Derivative filter is an integral part of pid design. IEE Proc. Control. Theory Appl. 149(1), 41–45 (2002)

    Article  Google Scholar 

  12. Juang, J.G., Huang, M.T., Liu, W.K.: Pid control using presearched genetic algorithms for a mimo system. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(5), 716–727 (2008)

    Article  Google Scholar 

  13. Jung, S., Dorf, R.C.: Novel analytic technique for pid and pida controller design. In: Proc. 13th IFAC World Congress, San Francisco USA (1996)

  14. Kumar, M., Hote, Y.V.: Robust cda-pida control scheme for load frequency control of interconnected power systems. IFAC-PapersOnLine 51(4), 616–621 (2018)

    Article  Google Scholar 

  15. Kumar, M., Hote, Y.V.: Robust IMC-PIDA controller design for load frequency control of a time delayed power system. In: Proc. 58th IEEE Conference on Decision and Control (CDC). Nice FRANCE (2019)

  16. Liu, C., Liu, G., Fang, J.: Feedback linearization and extended state observer-based control for rotor-ambs system with mismatched uncertainties. IEEE Trans. Ind. Electron. 64(2), 1313–1322 (2016)

    Article  MathSciNet  Google Scholar 

  17. Maloo, S., Kumar, M., Lakshmi, N.: A modified whale optimization algorithm based digital image watermarking approach. Sens. Imaging. https://doi.org/10.1007/s11220-020-00291-6 (2020)

  18. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  19. Mondal, S., Mahanta, C.: Adaptive second-order sliding mode controller for a twin rotor multi-input–multi-output system. IET Control Theory Appl. 6(14), 2157–2167 (2012)

    Article  MathSciNet  Google Scholar 

  20. Mosaad, A.M., Attia, M.A., Abdelaziz, A.Y.: Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Eng. J. 10(4), 755–767 (2019)

    Article  Google Scholar 

  21. Mostafa Elsaied, M., Abdallah Attia, M., Abdelhamed Mostafa, M., Fouad Mekhamer, S.: Application of different optimization techniques to load frequency control with WECS in a multi-area system. Electric Power Components Syst. 46(7), 739–756 (2018)

    Article  Google Scholar 

  22. Norsahperi, N., Danapalasingam, K.: Particle swarm-based and neuro-based fopid controllers for a twin rotor system with improved tracking performance and energy reduction. ISA Trans. 102, 230–244 (2020)

    Article  Google Scholar 

  23. Padhy, S., Panda, S., Mahapatra, S.: A modified gwo technique based cascade pi-pd controller for agc of power systems in presence of plug in electric vehicles. Eng. Sci. Technol. Int. J. 20(2), 427–442 (2017)

    Google Scholar 

  24. Patel, K., Mehta, A.: Discrete-time sliding mode protocols for leader-following consensus of discrete multi-agent system with switching graph topology. Eur. J. Control. 51, 65–75 (2020)

    Article  MathSciNet  Google Scholar 

  25. Paul, P.K., Jacob, J.: On the modeling of twin rotor mimo system using chirp inputs as test signals. Asian J. Control 19(5), 1731–1740 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Pazera, M., Witczak, M., Kukurowski, N., Buciakowski, M.: Towards simultaneous actuator and sensor faults estimation fora class of takagi-sugeno fuzzy systems: A twin-rotor system application. Sensors 20(12), 3486 (2020)

    Article  Google Scholar 

  27. Petkov, P.H., Christov, N.D., Konstantinov, M.M.: Robust real-time control of a two-rotor aerodynamic system. IFAC Proc. 41(2), 6422–6427 (2008)

    Article  Google Scholar 

  28. Precup, R.E., David, R.C., Petriu, E.M.: Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans. Ind. Electron. 64(1), 527–534 (2016)

    Article  Google Scholar 

  29. Qin, Z.C., Xin, Y., Sun, J.Q.: Multi-objective optimal motion control of a laboratory helicopter based on parallel simple cell mapping method. Asian J. Control 22, 1565–1578 (2019)

    Article  MathSciNet  Google Scholar 

  30. Qin, Z.C., Xin, Y., Sun, J.Q.: Dual-loop robust attitude control for an aerodynamic system with unknown dynamic model: Algorithm and experimental validation. IEEE Access 8, 36582–36594 (2020)

    Article  Google Scholar 

  31. Rashad, R., El-Badawy, A., Aboudonia, A.: Sliding mode disturbance observer-based control of a twin rotor mimo system. ISA Trans. 69, 166–174 (2017)

    Article  Google Scholar 

  32. Rojas-Cubides, H., Cortés-Romero, J., Coral-Enriquez, H., Rojas-Cubides, H.: Sliding mode control assisted by gpi observers for tracking tasks of a nonlinear multivariable twin-rotor aerodynamical system. Control. Eng. Pract. 88, 1–15 (2019)

    Article  Google Scholar 

  33. Saab, S.S., Jaafar, R.H.: A proportional-derivative-double derivative controller for robot manipulators. Int. J. Control., pp 1–13. https://doi.org/10.1080/00207179.2019.1642518 (2019)

  34. Saikia, L.C., Sinha, N.: Automatic generation control of a multi-area system using ant lion optimizer algorithm based pid plus second order derivative controller. Int. J. Electr. Power Energy Syst. 80, 52–63 (2016)

    Article  Google Scholar 

  35. Sain, D., Swain, S.K., Saha, A., Mishra, S.K., Chakraborty, S.: Real-time performance analysis of foi-pd controller for twin rotor mimo system. IETE Tech. Rev. 36(6), 547–567 (2019)

    Article  Google Scholar 

  36. Sornmuang, S., Sujitjorn, S.: Ga-based optimal pida controller design. In: Proceedings of the 10th WSEAS international conference on Systems theory and scientific computation. World Scientific and Engineering Academy and Society (WSEAS). pp 192–197 (2010)

  37. Sun, K., Jianbin, Q., Karimi, H.R., Fu, Y.: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.2979129 (2020)

  38. Sun, K., Liu, L., Qiu, J., Feng, G.: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.2965890 (2020)

  39. Sun, K., Qiu, J., Karimi, H.R., Gao, H.: A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint. IEEE Trans. Syst. Man Cybern. Syst. https://doi.org/10.1109/TSMC.2019.2958072 (2019)

  40. Ukakimaparn, P., Pannil, P., Boonchuay, P., Trisuwannawat, T.: Pida controller designed by kitti’s method. In: 2009 ICCAS-SICE. IEEE pp 1547–1550 (2009)

  41. Vilchis, J.A., Brogliato, B., Dzul, A., Lozano, R.: Nonlinear modelling and control of helicopters. Automatica 39(9), 1583–1596 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mahendra Kumar: Conceptualiz ation, Methodology, Investigation, Software, Validation, Writing- Original Draft Preparation.

Yogesh V. Hote: Supervision, Writing-Review And Editing.

Corresponding author

Correspondence to Mahendra Kumar.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Materials

The video recording of the experimental hardware setup of TRAS for azimuth and pitch angle responses using the proposed control design approach with and without external disturbances are added in the below link as: https://drive.google.com/file/d/14YqefVirdnTTiQkM3bso5BoymmT6Y98V/view?usp=sharing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Hote, Y.V. Real-Time Performance Analysis of PIDD2 Controller for Nonlinear Twin Rotor TITO Aerodynamical System. J Intell Robot Syst 101, 55 (2021). https://doi.org/10.1007/s10846-021-01322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01322-4

Keywords