Flock of Robots with Self-Cooperation for Prey-Predator Task | Journal of Intelligent & Robotic Systems Skip to main content
Log in

Flock of Robots with Self-Cooperation for Prey-Predator Task

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we present a way to lead a swarm of robots through four parameters called repulsion, attraction, orientation, and influence, which are inspired by the behavior of biological societies. Considering the kinematics and dynamics of the robots, we made computational simulations to test the swarm performance and to know the impact of parameters for a prey-predator task. The methodology was experimentally tested in a flock of implemented robots, despite hardware and software limitations. We propose the capture time and statistical metrics to quantify the swarm performance. The results of experimental implementations are consistent with computational simulations based on the robot kinematics and dynamics. Cooperation emerges between the predators while trying to catch the prey, and the change of parameters allows governing on the formation and behavior of the swarm in a decentralized way. Some potential applications for this task include protection, rescue, capture, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhu, B., Xie, L., Han, D., Meng, X., Teo, R.: A survey on recent progress in control of swarm systems. Sci. China Technol. Sci. 60(7), 070201 (2017). https://doi.org/10.1007/s11432-016-9088-2

    Article  MathSciNet  Google Scholar 

  2. Fujisawa, R., Dobata, S., Sugawara, K., Matsuno, F.: Designing pheromone communication in swarm robotics: Group foraging behavior mediated by chemical substance. Swarm Intell. 8(3), 227 (2014). https://doi.org/10.1007/s11721-014-0097-z

    Article  Google Scholar 

  3. Suárez, P., Iglesias, A., Gálvez, A.: Make robots be bats: specializing robotic swarms to the Bat algorithm. Swarm Evol. Comput. 44, 113 (2019). https://doi.org/10.1016/j.swevo.2018.01.005

    Article  Google Scholar 

  4. Inácio, F.R., Macharet, D.G., Chaimowicz, L.: PSO-based strategy for the segregation of heterogeneous robotic swarms. J. Comput. Sci. 31, 86 (2019). https://doi.org/10.1016/j.jocs.2018.12.008

    Article  Google Scholar 

  5. Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E., Dorigo, M., Wenseleers, T.: Evolution of self-organized task specialization in robot swarms. PLOS Comput. Biol. 11(8), 1 (2015). https://doi.org/10.1371/journal.pcbi.1004273

    Article  Google Scholar 

  6. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W. M. (eds.) Swarm Robotics, pp. 1–9. Springer, Berlin (2005)

  7. Şahin, E.: Swarm robotics: From sources of inspiration to domains of application. In: Swarm Robotics, Şahin, E., Spears, W.M. (eds.) , pp. 10–20. Springer, Berlin (2005)

  8. Camazine, S., Franks, N.R., Sneyd, J., Bonabeau, E., Deneubourg, J.L., Theraula, G.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  9. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence. Swarm Intell. 1(1), 3 (2007). https://doi.org/10.1007/s11721-007-0004-y

    Article  Google Scholar 

  10. Isaeva, V.V.: Self-organization in biological systems. Biol. Bull. 39(2), 110 (2012). https://doi.org/10.1134/S1062359012020069

    Article  Google Scholar 

  11. Tan, Y., Zheng, Z.: Research advance in swarm robotics. Def. Technol. 9(1), 18 (2013). https://doi.org/10.1016/j.dt.2013.03.001. http://www.sciencedirect.com/science/article/pii/S221491471300024X

    Article  Google Scholar 

  12. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1 (2013). https://doi.org/10.1007/s11721-012-0075-2

    Article  Google Scholar 

  13. Nedjah, N., Junior, L.S.: Review of methodologies and tasks in swarm robotics towards standardization. Swarm Evol. Comput. 50, 100565 (2019). https://doi.org/10.1016/j.swevo.2019.100565

    Article  Google Scholar 

  14. Fine, B.T., Shell, D.A.: Unifying microscopic flocking motion models for virtual, robotic, and biological flock members. Auton. Robots 35 (2), 195 (2013). https://doi.org/10.1007/s10514-013-9338-z

    Article  Google Scholar 

  15. Moeslinger, C., Schmickl, T., Crailsheim, K.: A minimalist flocking algorithm for swarm robots. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) Advances in Artificial Life. Darwin Meets von Neumann, pp. 375–382. Springer, Berlin (2011)

  16. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Robot. Syst. 10(12), 399 (2013). https://doi.org/10.5772/57313

    Article  Google Scholar 

  17. Cortés, J., Egerstedt, M.: Coordinated control of multi-robot systems: A survey. SICE Journal of Control, Measurement, and System Integration 10(6), 495 (2017). https://doi.org/10.9746/jcmsi.10.495

    Article  Google Scholar 

  18. Wurm, K.M.: Techniques for multi-robot coordination and navigation. Ph.D. thesis, Albert-Ludwigs-University of Freiburg, Street Address: Friedrichstr. 39 79098 Freiburg (2012)

  19. Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: antecedents and directions. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1, pp. 226–234 (1995)

  20. Anoop, A.S., Kanakasabapathy, P.: Review on swarm robotics platforms. In: 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1–6 (2017). https://doi.org/10.1109/TAPENERGY.2017.8397275

  21. Barca, J.C., Sekercioglu, Y.A: Swarm robotics reviewed. Robotica 31(3), 345–359 (2013). https://doi.org/10.1017/S026357471200032X

    Article  Google Scholar 

  22. Hamann, H.: Scenarios of Swarm Robotics, pp. 65–93. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2_4

    Google Scholar 

  23. Fong, S., Deb, S., Chaudhary, A.: A review of metaheuristics in robotics. Comput. Electr. Eng. 43(C), 278 (2015). https://doi.org/10.1016/j.compeleceng.2015.01.009

    Article  Google Scholar 

  24. Junior, L.S., Nedjah, N.: Wave algorithm applied to collective navigation of robotic swarms. Appl. Soft Comput. 57, 698 (2017). https://doi.org/10.1016/j.asoc.2016.06.004

    Article  Google Scholar 

  25. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25 (1987). https://doi.org/10.1145/37402.37406

    Article  Google Scholar 

  26. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. Elsevier Science Ltd 2002(218), 1 (2002). https://doi.org/10.1006/yjtbi.3065

    Article  MathSciNet  Google Scholar 

  27. Martín H, J.A., de Lope, J., Maravall, D.: Analysis and solution of a predator-protector-prey multi-robot system by a high-level reinforcement learning architecture and the adaptive systems theory. Auton. Syst. 58(12), 1266 (2010). https://doi.org/10.1016/j.robot.2010.08.005

    Article  Google Scholar 

  28. Nolfi, S.: Co-evolving predator and prey robots. Adapt. Behav. 20 (1), 10 (2012). https://doi.org/10.1177/1059712311426912

    Article  Google Scholar 

  29. Mukhopadhyay, S., Leung, H.: In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2753–2758. https://doi.org/10.1109/SMC.2013.470 (2013)

  30. Yasuda, T., Ohkura, K., Nomura, T., Matsumura, Y.: Evolutionary swarm robotics approach to a pursuit problem. In: 2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS), pp. 1–6. https://doi.org/10.1109/RIISS.2014.7009182 (2014)

  31. Gomes, J.C., Mariano, P., Christensen, A.L.: Systematic derivation of behaviour characterisations in evolutionary robotics, arXiv:1407.0577 (2014)

  32. Rodrigues, T., Duarte, M., Figueiró, M., Costa, V., Oliveira, S. M., Christensen, A.L.: Overcoming limited onboard sensing in swarm robotics through local communication. In: Nguyen, N. T., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds.) Transactions on Computational Collective Intelligence XX, pp. 201–223. Springer International Publishing, Cham (2015)

  33. Olson, R.S., Knoester, D.B., Adami, C.: Evolution of swarming behavior is shaped by how predators attack. Artif. Life 22(3), 299 (2016). https://doi.org/10.1162/ARTL_a_00206

    Article  Google Scholar 

  34. Bernard, A., André, J.B., Bredeche, N.: To cooperate or not to cooperate: why behavioural mechanisms matter. PLOS Comput. Biol. 12(5), 1 (2016). https://doi.org/10.1371/journal.pcbi.1004886

    Article  Google Scholar 

  35. Gomes, J., Duarte, M., Mariano, P., Christensen, A.L.: Cooperative coevolution of control for a real multirobot system. In: Handl, J., Hart, E., Lewis, P. R., López-Ibáńez, M., Ochoa, G., Paechter, B. (eds.) Parallel Problem Solving from Nature – PPSN XIV, pp. 591–601. Springer International Publishing, Cham (2016)

  36. Ordaz-Rivas, E., Rodriguez-Liñan, A., Aguilera-Ruíz, M., Torres-Treviño, L.: Collective tasks for a flock of robots using influence factor. J. Intell. Robot. Sys. https://doi.org/10.1007/s10846-018-0941-2 (2018)

  37. Bara, A., Dale, S.: Dynamic modeling and stabilization of wheeled mobile robot. In: Proceedings of the 5th WSEAS International Conference on Dynamical Systems and Control (World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA), CONTROL’09, pp. 87–92. http://dl.acm.org/citation.cfm?id=1628055.1628077 (2009)

  38. Liu, P., Yu, H., Cang, S.: Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 549–554 (2016)

  39. Liu, P., Yu, H., Cang, S.: Modelling and analysis of dynamic frictional interactions of vibro-driven capsule systems with viscoelastic property. European Journal of Mechanics - A/Solids 74, 16 (2019). https://doi.org/10.1016/j.euromechsol.2018.10.016. http://www.sciencedirect.com/science/article/pii/S0997753818301177

    Article  MathSciNet  Google Scholar 

  40. Dixon, W.: Control of robot manipulators in joint space. Int. J. Robust Nonlinear Control. 16, 945 (2006). https://doi.org/10.1002/rnc.1114

    Article  Google Scholar 

  41. Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (1996). https://books.google.com.mx/books?id=qiBuQgAACAAJ

    Google Scholar 

  42. Savino, S.: An algorithm for robot motion detection by means of a stereoscopic vision system. Adv. Robot. 27(13), 981 (2013). https://doi.org/10.1080/01691864.2013.804156

    Article  Google Scholar 

  43. Stojanovic, V., Nedic, N., Prsic, D., Dubonjic, L.: Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise. Appl. Math. Model. 40(13), 6676 (2016). https://doi.org/10.1016/j.apm.2016.02.014. http://www.sciencedirect.com/science/article/pii/S0307904X16300786

    Article  MathSciNet  Google Scholar 

  44. Filipović, V., Nedic, N., Stojanovic, V.: Robust identification of pneumatic servo actuators in the real situations. Forschung im Ingenieurwesen 75. https://doi.org/10.1007/s10010-011-0144-5 (2011)

  45. Stojanovic, V., Filipović, V.: Adaptive input design for identification of output error model with constrained output. Circuits, Syst. Signal Process. 33. https://doi.org/10.1007/s00034-013-9633-0 (2014)

  46. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172, 292 (2016). https://doi.org/10.1016/j.neucom.2015.05.116

    Article  Google Scholar 

  47. Ordaz-Rivas, E., Rodríguez-Liñán, A., Torres-Treviño, L.: Collaboration of robot swarms with a relation of individuals with prey-predator type. In: Torres Guerrero, F., Lozoya-Santos, J., Gonzalez Mendivil, E., Neira-Tovar, L., Ramírez Flores, P.G., Martin-Gutierrez, J. (eds.) Smart Technology, pp. 121–132. Springer International Publishing, Cham (2018)

  48. Chazelle, B.: An algorithmic approach to collective behavior. J. Stat. Phys. 158(3), 514 (2015). https://doi.org/10.1007/s10955-014-1140-6

    Article  MathSciNet  MATH  Google Scholar 

  49. Özdemir, A., Gauci, M., Gross, R.: Shepherding with robots that do not compute. In: The 2018 conference on artificial life: A hybrid of the european conference on artificial life (ECAL) and the International Conference on the Synthesis and Simulation of Living Systems (ALIFE) pp. 332–339. https://doi.org/10.1162/isal_a_056. https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_056 (2017)

  50. Potter, M.A., Meeden, L., Schultz, A.C.: Heterogeneity in the coevolved behaviors of mobile robots: The emergence of specialists. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence IJCAI’01, vol. 2, pp. 1337–1343. Morgan Kaufmann Publishers Inc., San Francisco (2001). http://dl.acm.org/citation.cfm?id=1642194.1642273

  51. Nouyan, S., Gross, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695 (2009). https://doi.org/10.1109/TEVC.2008.2011746

    Article  Google Scholar 

  52. Ludwig, L., Gini, M.: Robotic swarm dispersion using wireless intensity signals. In: Gini, M., Voyles, R. (eds.) Distributed Autonomous Robotic Systems 7, pp. 135–144. Springer, Tokyo (2006)

  53. McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In: Alami, R., Chatila, R., Asama, H. (eds.) Distributed Autonomous Robotic Systems 6, pp. 399–408. Springer, Tokyo (2007)

  54. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12(1), 30 (1972). https://doi.org/10.1007/BF00289234

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I’m grateful to Consejo Nacional de Ciencia y Tecnología (CONACYT) and Universidad Autónoma de Nuevo León (UANL), for their support and sponsorship with the number of scholarship 334681, for the realization of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Torres-Treviño.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 1.45 MB)

(MP4 15.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordaz-Rivas, E., Rodriguez-Liñan, A. & Torres-Treviño, L. Flock of Robots with Self-Cooperation for Prey-Predator Task. J Intell Robot Syst 101, 39 (2021). https://doi.org/10.1007/s10846-020-01283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-020-01283-0

Keywords

Navigation