Meet Stevie: a Socially Assistive Robot Developed Through Application of a ‘Design-Thinking’ Approach | Journal of Intelligent & Robotic Systems
Skip to main content

Meet Stevie: a Socially Assistive Robot Developed Through Application of a ‘Design-Thinking’ Approach

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Socially assistive service robots offer a compelling means of empowering vulnerable members of society. They can perform useful custodial functions for their users, thus reducing reliance on informal and formal caregivers. The aim of this work was to develop a prototype socially assistive robot through application of user-centered design methods, adopting an approach based on the ‘design thinking’ philosophy. Using a range of design techniques that have seldom been applied in a robotics context, a high resolution prototype was designed, fabricated and evaluated using a mixed-methods approach. Experiments were performed with four distinct user groups (including residents and care staff at a retirement community) to explore the first impressions that the robot created, its perceived usefulness, and the potential for acceptance of the platform. Overall, the robot was positively perceived by each user group, and user feedback from testing generated insights regarding the design, usability and envisioned use-cases of the technology. These findings have value in informing future iterations of robot design, as well as providing motivation for a series of future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Holt-Lunstad, J., Smith, T.B., Baker, M., Harris, T., Stephenson, D.: Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect. Psychol. Sci. 10(2), 227–237 (2015)

    Article  Google Scholar 

  2. De Graaf, M.M., Allouch, S.B.: Exploring influencing variables for the acceptance of social robots. Robot. Auton. Syst. 61(12), 1476–1486 (2013)

    Article  Google Scholar 

  3. Van der Heijden, H.: User acceptance of hedonic information systems. MIS Quarterly 28(4), 695–704 (2004)

    Article  Google Scholar 

  4. Hertzum, M.: Images of usability. Int. J. Hum. Comput. Interact. 26(6), 567–600 (2010)

    Article  Google Scholar 

  5. Mason, C.: The nature of humans and machines: The case for human sciences in technology design. In: American Association for the Advancement of Artificial Intelligence (AAAI), 2014 Fall Symposium. AAAI (2014)

  6. Brown, T., Katz, B.: Change by design. J. Prod. Innov. Manag. 28, 381–383 (2011). https://doi.org/10.1111/j.1540-5885.2011.00806.x

    Article  Google Scholar 

  7. Martin, R.L.: The Design of Business: Why Design Thinking is the Next Competitive Advantage. Harvard Business Press, Cambridge (2009)

    Google Scholar 

  8. van der Cammen, T.J., Albayrak, A., Voûte, E., Molenbroek, J. F.: New horizons in design for autonomous ageing. Age Ageing 46(1), 11–17 (2017)

    Google Scholar 

  9. Tonkin, M., Vitale, J., Herse, S., Williams, M.-A., Judge, W., Wang, X.: Design methodology for the ux of hri: a field study of a commercial social robot at an airport. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pp 407–415. ACM (2018)

  10. Honda Motor Corp. Ltd: Asimo Technical Information. Tech. rep. (2007)

  11. Ackerman, E.: Honda halts asimo development in favor of more useful humanoid robots. In: IEEE Spectrum (2018)

  12. Pandey, A.K., Gelin, R., Alami, R., Viry, R., Buendia, A., Meertens, R., Chetouani, M., Devillers, L., Tahon, M., Filliat, D., et al.: Romeo2 project: humanoid robot assistant and companion for everyday life: I. situation assessment for social intelligence. In: International Workshop on Artificial Intelligence and Cognition, 2nd edn, vol. 1315, CEUR Workshop Proceedings (CEUR-WS. org), pp 140–147 (2014)

  13. SpotMini: Good Things Come in Small Packages. https://www.bostondynamics.com/spot-mini

  14. Morris, D.Z.: Boston dynamics is gearing up to produce thousands of robot dogs. Fortune (2018)

  15. Graf, B., Reiser, U., Hägele, M., Mauz, K., Klein, P.: Robotic home assistant care-o-bot®; 3-product vision and innovation platform. In: 2009 IEEE Workshop on Advanced Robotics and Its Social Impacts (ARSO), pp 139–144. IEEE (2009)

  16. Yamaguchi, U., Saito, F., Ikeda, K., Yamamoto, T.: Hsr, human support robot as research and development platform. In: The Abstracts of the International Conference on Advanced Mechatronics: Toward Evolutionary Fusion of IT and Mechatronics: ICAM 2015.6, pp 39–40. The Japan Society of Mechanical Engineers (2015)

  17. PAL Robotics. Tiago Mobile Manipulator. http://tiago.pal-robotics.com/

  18. Wise, M., Ferguson, M., King, D., Diehr, E., Dymesich, D.: Fetch and freight: standard platforms for service robot applications. In: Workshop on Autonomous Mobile Service Robots (2016)

  19. Wyrobek, K.A., Berger, E.H., Van der Loos, H.M., Salisbury, J.K.: Towards a personal robotics development platform: rationale and design of an intrinsically safe personal robot. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp 2165–2170. IEEE (2008)

  20. Fraunhofer IPA. Care-O-bot 4. https://www.care-o-bot.de/en/care-o-bot-4.html

  21. Srinivasa, S.S., Berenson, D., Cakmak, M., Collet, A., Dogar, M.R., Dragan, A.D., Knepper, R.A., Niemueller, T., Strabala, K., Weghe, M.V., et al.: Herb 2.0: lessons learned from developing a mobile manipulator for the home. Proc. IEEE 100(8), 2410–2428 (2012)

    Article  Google Scholar 

  22. Niemelä, M., Heikkilä, P., Lammi, H.: A social service robot in a shopping mall: expectations of the management, retailers and consumers. In: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, pp 227–228. ACM (2017)

  23. Martinez-Martin, E., del Pobil, A.P.: Personal robot assistants for elderly care: an overview. In: Personal Assistants: Emerging Computational Technologies, pp 77–91. Springer (2018)

  24. Bui, H.-D., Pham, C., Lim, Y., Tan, Y., Chong, N.Y.: Integrating a humanoid robot into echonet-based smart home environments. In: International Conference on Social Robotics, pp 314–323. Springer (2017)

  25. Koumpis, A., Casey, D., Murphy, K., Kouroupetroglou, C.: The perceptions of people with dementia on robot companions and their potential to reduce loneliness and isolation. In: 7th International Conference on Social Robotics Paris (2016)

  26. Mason, C., Mason, E.: Haptic medicine. Stud. Health Technol. Inform. 149, 368–385 (2009)

    Google Scholar 

  27. Shibata, T., Mitsui, T., Wada, K., Touda, A., Kumasaka, T., Tagami, K., Tanie, K.: Mental commit robot and its application to therapy of children. In: Proceedings. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2001, vol. 2, pp 1053–1058. IEEE (2001)

  28. Wada, K., Ikeda, Y., Inoue, K., Uehara, R.: Development and preliminary evaluation of a caregiver’s manual for robot therapy using the therapeutic seal robot paro. In: RO-MAN, 2010 IEEE, pp 533–538. IEEE (2010)

  29. Sabanovic, S., Bennett, C.C., Chang, W.-L., Huber, L.: Paro robot affects diverse interaction modalities in group sensory therapy for older adults with dementia. In: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), pp 1–6. IEEE (2013)

  30. Guizzo, E.: Cynthia breazeal unveils jibo, a social robot for the home. In: IEEE Spectrum (2014)

  31. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467 (2015)

    Article  Google Scholar 

  32. Sanan, S., Moidel, J.B., Atkeson, C.G.: Robots with inflatable links. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp 4331–4336, IEEE (2009)

  33. Sanan, S., Lynn, P.S., Griffith, S.T.: Pneumatic torsional actuators for inflatable robots. J. Mech. Robot. 6(3), 031003 (2014)

    Article  Google Scholar 

  34. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015)

    Article  Google Scholar 

  35. Wehner, M., Quinlivan, B., Aubin, P.M., Martinez-Villalpando, E., Baumann, M., Stirling, L., Holt, K., Wood, R., Walsh, C.: A lightweight soft exosuit for gait assistance. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp 3362–3369. IEEE (2013)

  36. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Rob. 1(1), 75–87 (2014)

    Article  Google Scholar 

  37. Wehner, M., Truby, R.L., Fitzgerald, D.J., Mosadegh, B., Whitesides, G.M., Lewis, J.A., Wood, R.J.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451 (2016)

    Article  Google Scholar 

  38. Seok, S., Onal, C.D., Cho, K.-J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18(5), 1485–1497 (2013)

    Article  Google Scholar 

  39. Weiss, A., Bartneck, C.: Meta analysis of the usage of the godspeed questionnaire series. In: 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp 381–388. IEEE (2015)

  40. Carleton, T., Leifer, L.: Stanford’s me310 course as an evolution of engineering design. In: Proceedings of the 19th CIRP Design Conference–Competitive Design. Cranfield University Press (2009)

  41. Forlizzi, J., DiSalvo, C., Gemperle, F.: Assistive robotics and an ecology of elders living independently in their homes. Hum. Comput. Interact. 19(1), 25–59 (2004)

    Article  Google Scholar 

  42. McGinn, C., Cullinan, M.F., Culleton, M., Kelly, K.: A human-oriented framework for developing assistive service robots. Disabil. Rehabil. Assist. Technol. 13(3), 293–304 (2018)

    Article  Google Scholar 

  43. Feil-Seifer, D., Mataric, M.J.: Defining socially assistive robotics. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, pp 465–468. IEEE (2005)

  44. Bushnell, T., Steber, S., Matta, A., Cutkosky, M., Leifer, L.: Using a “dark horse” prototype to manage innovative teams. In: 3rd International Conference on Integration of Design, Engineering and Management for Innovation (2013)

  45. Durão, L.F.C., Kelly, K., Nakano, D.N., Zancul, E., McGinn, C.L.: Divergent prototyping effect on the final design solution: the role of “dark horse” prototype in innovation projects. Procedia CIRP 70, 265–271 (2018)

    Article  Google Scholar 

  46. Mereu, F., Villarroel, J.: Visions project k. 1: Diy 3-d interactive videohologram device. Int. J. Arts Technol. 7(4), 384–387 (2014)

    Article  Google Scholar 

  47. McGinn, C: Why Do Robots Need a Head? The Role of Social Interfaces on Service Robots. International Journal of Social Robotics. pp. 1–15 (2019)

  48. Reich-Stiebert, N., Eyssel, F.: (ir) relevance of gender?: on the influence of gender stereotypes on learning with a robot. In: Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, pp 166–176. ACM (2017)

  49. Tay, B.T.C., Park, T., Jung, Y., Tan, Y.K., Wong, A.H.Y.: When stereotypes meet robots: The effect of gender stereotypes on people’s acceptance of a security robot. In: International Conference on Engineering Psychology and Cognitive Ergonomics, pp 261–270. Springer (2013)

  50. Powers, A., Kramer, A.D., Lim, S., Kuo, J., Lee, S.-l., Kiesler, S.: Eliciting information from people with a gendered humanoid robot. In: IEEE International Workshop on Robot and Human Interactive Communication, 2005. ROMAN 2005, pp 158–163. IEEE (2005)

  51. Eyssel, F., Hegel, F.: (s)he’s got the look: gender stereotyping of robots. J. Appl. Soc. Psychol. 42(9), 2213–2230 (2012)

    Article  Google Scholar 

  52. Bartneck, C., Yogeeswaran, K., Ser, Q.M., Woodward, G., Sparrow, R., Wang, S., Eyssel, F.: Robots and racism. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pp 196–204. ACM (2018)

  53. Tay, B., Jung, Y., Park, T.: When stereotypes meet robots: the double-edge sword of robot gender and personality in human–robot interaction. Comput. Hum. Behav. 38, 75–84 (2014)

    Article  Google Scholar 

  54. Joosse, M., Lohse, M., Pérez, J. G., Evers, V.: What you do is who you are: the role of task context in perceived social robot personality. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp 2134–2139. IEEE (2013)

  55. Hirose, M.: Development of humanoid robot asimo. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop2 (Oct. 29, 2001) (2001)

  56. Black, A.W., Taylor, P., Caley, R., Clark, R.: The festival speech synthesis system. http://www.geocities.ws/cbm/votrax/festival.pdf (1999)

  57. CereProc. CereVoice Engine Text-to-Speech SDK. https://www.cereproc.com/en/products/sdk

  58. Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Robot. 1(1), 71–81 (2009)

    Article  Google Scholar 

  59. Oddcast, “Oddcast Text-to-Speech (TTS). http://www.oddcast.com/home/demos/tts/tts_example.php

  60. Carleton, T., Cockayne, W., Tahvanainen, J.: Playbook for strategic foresight and innovation: a hands-on guide for modeling, designing, and leading your company’s next radical innovation. Innovation Leadership Board (2013)

  61. Dautenhahn, K.: The art of designing socially intelligent agents: science, fiction, and the human in the loop. Appl. Artif. Intell. 12(7–8), 573–617 (1998)

    Article  Google Scholar 

  62. Hanson, D., Olney, A., Prilliman, S., Mathews, E., Zielke, M., Hammons, D., Fernandez, R., Stephanou, H.: Upending the uncanny valley. In: AAAI, vol. 5, pp 1728–1729 (2005)

  63. Złotowski, J., Proudfoot, D., Yogeeswaran, K., Bartneck, C: Anthropomorphism: opportunities and challenges in human–robot interaction. Int. J. Soc. Robot. 7(3), 347–360 (2015)

    Article  Google Scholar 

  64. Blanson, O.A., Hoondert, V., Schrama-Groot, F., Looije, R., Alpay, L.L., Neerincx, M.A.: “I just have diabetes”: childrens need for diabetes self-management support and how a social robot can accommodate their needs. Patient Intell. 4(5), 1–61 (2012)

    Google Scholar 

  65. Heerink, M., Krose, B., Evers, V., Wielinga, B.: Measuring acceptance of an assistive social robot: a suggested toolkit. In: The 18th IEEE International Symposium on Robot and Human Interactive Communication, 2009. RO-MAN 2009, pp 528–533. IEEE (2009)

  66. Wu, Y.-h., Wrobel, J., Cornuet, M., Kerhervé, H., Damnée, S., Rigaud, A.-S.: Acceptance of an assistive robot in older adults: a mixed-method study of human–robot interaction over a 1-month period in the living lab setting. Clin. Interv. Aging 9, 801 (2014)

    Article  Google Scholar 

  67. Peek, S.T., Wouters, E.J., van Hoof, J., Luijkx, K.G., Boeije, H.R., Vrijhoef, H.J.: Factors influencing acceptance of technology for aging in place: a systematic review. Int. J. Med. Inform. 83(4), 235–248 (2014)

    Article  Google Scholar 

  68. Parette, P., Scherer, M.: Assistive Technology Use and Stigma. Education and Training in Developmental Disabilities 39(3), 217–226 (2004)

    Google Scholar 

  69. Belpaeme, T., Baxter, P., De Greeff, J., Kennedy, J., Read, R., Looije, R., Neerincx, M., Baroni, I., Zelati, M.C.: Child-robot interaction: perspectives and challenges. In: International Conference on Social Robotics, pp 452–459. Springer (2013)

  70. Buchanan, R.: Wicked problems in design thinking. Des. Issues 8(2), 5–21 (1992)

    Article  MathSciNet  Google Scholar 

  71. Koay, K.L., Syrdal, D.S., Walters, M.L., Dautenhahn, K.: Living with robots: investigating the habituation effect in participants’ preferences during a longitudinal human-robot interaction study. In: The 16th IEEE International Symposium on Robot and Human interactive Communication, 2007. RO-MAN 2007, pp 564–569. IEEE (2007)

  72. Broekens, J., Heerink, M., Rosendal, H., et al.: Assistive social robots in elderly care: a review. Gerontechnology 8(2), 94–103 (2009)

    Article  Google Scholar 

  73. Frennert, S., Eftring, H., Östlund, B.: What older people expect of robots: a mixed methods approach. In: International Conference on Social Robotics, pp 19–29. Springer (2013)

  74. Pino, M., Boulay, M., Jouen, F., Rigaud, A.S.: “Are we ready for robots that care for us?” Attitudes and opinions of older adults toward socially assistive robots. Front. Aging Neurosci. 7, 141 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Aisling Heaney, Bobby Gilham, Jack Lynam, Ana Bia Viera, Victor Muniz, Luiz Sol, Bernardo Bichucher, Gabriele Penedo and Mariana Tamashiro for their efforts in assisting the design of the social interface of the robot. The authors would like to thank Aran Sena, Tiarnan O’Kelly, Adam Coyne, and Eugene Mercer for their respective contributions to the development of the platform. Finally, the authors would like to thank Enterprise Ireland, Alone, and the Army Distaff Foundation for their support in conducting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor McGinn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGinn, C., Bourke, E., Murtagh, A. et al. Meet Stevie: a Socially Assistive Robot Developed Through Application of a ‘Design-Thinking’ Approach. J Intell Robot Syst 98, 39–58 (2020). https://doi.org/10.1007/s10846-019-01051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01051-9

Keywords