Artificial bee colony algorithm for large-scale problems and engineering design optimization | Journal of Intelligent Manufacturing Skip to main content
Log in

Artificial bee colony algorithm for large-scale problems and engineering design optimization

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Engineering design problems are generally large scale or nonlinear or constrained optimization problems. The Artificial Bee Colony (ABC) algorithm is a successful tool for optimizing unconstrained problems. In this work, the ABC algorithm is used to solve large scale optimization problems, and it is applied to engineering design problems by extending the basic ABC algorithm simply by adding a constraint handling technique into the selection step of the ABC algorithm in order to prefer the feasible regions of entire search space. Nine well-known large scale unconstrained test problems and five well-known constrained engineering problems are solved by using the ABC algorithm and the performance of ABC algorithm is compared against those of state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartak, R., Salido, M. A., & Rossi, F. (2008). Constraint satisfaction techniques in planning and scheduling. Journal of Intelligent Manufacturing, doi:10.1007/s10845-008-0203-4.

  • Basturk, B. & Karaboga, D. (2006). An artificial bee colony (abc) algorithm for numeric function optimization. In IEEE Swarm Intelligence Symposium 2006 Indianapolis. Indiana, USA.

  • Bean, J. C., & Hadj-Alouane, A. B. (1992). A dual genetic algorithm for bounded integer programs. Technical report TR 92-53, Department of Industrial and Operations Engineering, The University of Michigan. To appear in R.A.I.R.O.-R.O. (invited submission to special issue on GAs and OR).

  • Boyer D. O., Martnez C. H., Pedrajas N. G. (2005) Crossover operator for evolutionary algorithms based on population features. Journal of Artificial Intelligence Research 24: 1–48

    Article  Google Scholar 

  • Coello Coello C.A. (2002) Theoretical and numerical constraint handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(1112): 1245–1287

    Article  Google Scholar 

  • Coello Coello, C. A. (1999). A survey of constraint handling techniques used with evolutionary algorithms. Technical report, LANIA, LaniaRI9904.

  • Corne D., Dorigo M., Glover F. (1999) New ideas in optimization. McGraw-Hill, New York

    Google Scholar 

  • Deb K. (2000) An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186: 311–338

    Article  Google Scholar 

  • Digalakis J. G., Margaritis K. G. (2002) An experimental study of benchmarking functions for genetic algorithms. International Journal of Computer and Mathematics 79(4): 403–416

    Article  Google Scholar 

  • He S., Prempain E., Wu Q. (2004) An improved particle swarm optimizer for mechanical design optimization problems. Engineering Optimization 36: 585–605

    Article  Google Scholar 

  • Homaifar A., Lai S. H. Y., Qi X. (1994) Constrained optimization via genetic algorithms. Simulation 62(4): 242–254

    Article  Google Scholar 

  • Joines J., Houck C. (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs. In: Fogel D. (eds) Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE Press, Orlando, Florida, pp 579–584

    Google Scholar 

  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department.

  • Karaboga, D., & Akay, B. (2007). An artificial bee colony (abc) algorithm on training artificial neural networks. In 15th IEEE Signal Processing and Communications Applications, SIU 2007 (pp.1–4). Eskisehir, Turkiye.

  • Karaboga D., Akay B. (2009) A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation 214: 108–132

    Article  Google Scholar 

  • Karaboga, D., Akay, B., & Ozturk, C. (2007). Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In Modeling decisions for artificial intelligence (vol. 4617/2007 of LNCS, pp. 318–329). Springer.

  • Karaboga, D. & Basturk, B. (2007a). Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In Advances in soft computing: foundations of fuzzy logic and soft computing (vol. 4529/2007 of LNCS, pp. 789–798). Springer.

  • Karaboga D., Basturk B. (2007b) A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (abc) algorithm. Journal of Global Optimization 39(3): 459–471

    Article  Google Scholar 

  • Karaboga D., Basturk B. (2008) On the performance of artificial bee colony (abc) algorithm. Applied Soft Computing 8(1): 687–697

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks (vol. 4, pp. 1942–1948).

  • Koziel S., Michalewicz Z. (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evolutionary Computation 7: 19–44

    Article  Google Scholar 

  • Mezura-Montes E., Coello Coello C.A. (2005a) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions On Evolutionary Computation 9(1): 1–17

    Article  Google Scholar 

  • Mezura-Montes, E., & Coello Coello, C. A. (2005b). Useful infeasible solutions in engineering optimization with evolutionary algorithms. In MICAI 2005: Advances in Artificial Intelligence of Lecture Notes in Computer Science (vol. 3789/2005, pp. 652–662). Berlin: Springer.

  • Michalewicz, Z., & Attia, N. F. (1994). Evolutionary optimization of constrained problems. In Proceedings of the 3rd Annual Conference on Evolutionary Programming (pp. 98–108). World Scientific, Singapore

  • Michalewicz Z., Deb K., Schmidt M., Stidsen T. (1999) Evolutionary algorithms for engineering applications. In: Miettinen K., Neittaanmäki P., Mäkelä M. M., Périaux J. (eds) Evolutionary algorithms in engineering and computer science. Wiley, Chichester, pp 73–94

    Google Scholar 

  • Michalewicz, Z. & Janikow, C. Z. (1991). Handling constraints in genetic algorithms. In R. K. Belew & L. B. Booker (Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA-91) (pp. 151–157). Morgan Kaufmann Publishers: San Mateo, California, University of California, San Diego.

  • Michalewicz Z., Nazhiyath G. (1995) Genocop III: A co-evolutionary algorithm for numerical optimization with nonlinear constraints. In: Fogel D.B. (eds) Proceedings of the Second IEEE International Conference on Evolutionary Computation. IEEE Press, Piscataway, New Jersey, pp 647–651

    Chapter  Google Scholar 

  • Myung H., Kim J.-H., Fogel D.B. (1995) Preliminary investigation into a two-stage method of evolutionary optimization on constrained problems. In: McDonnell J.R., Reynolds R.G., Fogel D.B. (eds) Proceedings of the Fourth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, Massachusetts, pp 449–463

    Google Scholar 

  • Paredis, J. (1994). Co-evolutionary constraint satisfaction. In Proceedings of the 3rd Conference on Parallel Problem Solving from Nature (pp. 46–55). New York: Springer.

  • Parmee I.C., Purchase G. (1994) The development of a directed genetic search technique for heavily constrained design spaces. In: Parmee I.C. (eds) Adaptive computing in engineering design and control-’94. University of Plymouth, Plymouth, UK, pp 97–102

    Google Scholar 

  • Parsopoulos K., Vrahatis M. (2002) Particle swarm optimization method for constrained optimization problems. In: Sincak P., Vascak J., Kvasnicka V., Pospichal J. (eds) Intelligent technologies—theory and application: New trends in intelligent technologies, volume 76 of frontiers in artificial intelligence and applications. IOS Press, Amsterdam, pp 214–220

    Google Scholar 

  • Parsopoulos, K., & Vrahatis, M. (2005). Unified particle swarm optimization for solving constrained engineering optimization problems. In ICNC 2005: Advances in natural computation volume 3612/2005 of lecture notes in computer science (pp. 582–591). Berlin/Heidelberg: Springer.

  • Powell, D., & Skolnick, M. M. (1993). Using genetic algorithms in engineering design optimization with non-linear constraints. In S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA-93) (pp. 424–431). San Mateo, California. University of Illinois at Urbana-Champaign, Morgan Kaufmann Publishers.

  • Rao S. S. (1996) Engineering optimization. Wiley, New York

    Google Scholar 

  • Ray T., Liew K. (2003) Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation 7: 386–396

    Article  Google Scholar 

  • Reynolds R.G., Michalewicz Z., Cavaretta M. (1995) Using cultural algorithms for constraint handling in GENOCOP. In: McDonnell J.R., Reynolds R.G., Fogel D.B. (eds) Proceedings of the Fourth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, Massachusetts, pp 298–305

    Google Scholar 

  • Richardson J.T., Palmer M.R., Liepins G., Hilliard M. (1989) Some guidelines for genetic algorithms with penalty functions. In: Schaffer J.D. (eds) Proceedings of the Third International Conference on Genetic Algorithms (ICGA-89). George Mason University, Morgan Kaufmann Publishers, San Mateo, California, pp 191–197

    Google Scholar 

  • Schoenauer M., Xanthakis S. (1993) Constrained GA optimization. In: Forrest S. (eds) Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA-93). University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, San Mateo, California, pp 573–580

    Google Scholar 

  • Smith A. E., Coit D. W. (1997) Constraint handling techniques-penalty functions in handbook of evolutionary computation (vol. 5.2). Oxford University Press and Institute of Physics, New York

    Google Scholar 

  • Storn, R., & Price, K. (1995). Differential evolution -a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute, Berkley.

  • Yeniay O. (2005) Penalty function methods for constrained optimization with genetic algorithms. Mathematical and Computational Applications 10: 45–56

    Google Scholar 

  • Zhang J. Y., Liang S. Y., Yao J., Chen J. M., Huang J. L. (2006) Evolutionary optimization of machining processes. Journal of Intelligent Manufacturing 17: 203–215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahriye Akay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akay, B., Karaboga, D. Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23, 1001–1014 (2012). https://doi.org/10.1007/s10845-010-0393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-010-0393-4

Keywords

Navigation