Benefits of Partitioning in a Projection-based and Realizable Model-order Reduction Flow | Journal of Electronic Testing Skip to main content
Log in

Benefits of Partitioning in a Projection-based and Realizable Model-order Reduction Flow

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Model-order reduction (MOR) is a typical approach to speed up the post-layout verification simulation step in circuit design. This paper studies the benefits of using circuit partitioning in a complete MOR flow. First, an efficient reduction algorithm package comprising of partitioning, reduction, and realization parts is presented. The reduction flow is then discussed using theoretical analysis and simulations from an array of 65-nm technology node interconnect circuits. It is shown that the reduction efficiency and computational costs quickly worsen with increased circuit size when using a direct projection-based MOR approach. In contrast, by using partitioning, the MOR can retain the scalability of the reduction problem, being computationally lighter and more efficient even with larger circuits. In addition, using partitioning may improve the robustness of the MOR flow in cases with circuits with many ports or sensitive verification simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Corporation AWR–APLAC (2013) APLAC — Circuit simulation and design tool, Version 8.7 Manuals. AWR–APLAC Corporation, Espoo, Finland

    Google Scholar 

  2. Devgan A, O ′Brien PR (1999) Realizable reduction for RC interconnect circuits. In: Proceedings of IEEE ICCAD

  3. Freund RW (2004) SPRIM: Structure-preserving reduced-order interconnect macromodeling. In: Proceedings of the IEEE ICCAD

  4. Freund RW (2011) The SPRIM algorithm for structure-preserving order reduction. In: Lecture notes in electrical engineering 74, model reduction for circuit simulation. Springer, pp 25–52

  5. Gilbert JR, Moler C, Schreiber R (1992) Sparse matrices in MATLAB: design and implementation. SIAM J Matrix Anal Appl 13 (1): 333–356

    Article  MATH  MathSciNet  Google Scholar 

  6. Golub GH, Loan CFV (1989) Matrix Computations. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  7. Han E-H, Karypis G, Kumar V, Mobasher B (1997) Clustering based on association rule hypergraphs. In: Workshop on research issues on data mining and knowledge discovery

  8. Honkala M, Miettinen P, Roos J (2010) Hierarchical model-order reduction flow. In: Mathematics in industry 14, scientific computing in electrical engineering SCEE 2008. Springer, pp 539–546

  9. Ionutiu R, Rommes J, Schilders WHA (2011). IEEE Trans Comput-Aided Des Integr Circuits Syst 30 (12): 1828–1841

    Article  Google Scholar 

  10. Karypis G, Kumar V (2007). hMETIS, A hypergraph partitioning package (version 1.5.3). http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download

  11. Karypis G, Kumar V (2007). METIS, A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices (Version 4.0). http://glaros.dtc.umn.edu/gkhome/metis/metis/download

  12. Karypis G (2014) Family of graph and hypergraph partitioning software, Karypis Lab. University of Minnesota, Minneapolis. http://glaros.dtc.umn.edu/gkhome/views/metis

  13. Kundert KS (1995) Designer’s guide to SPICE and SPECTRE. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  14. Lee Y-M, Cao Y, Chen T-H, Wang JM, Chen C (2005) HiPrime: Hierarchical and passivity preserved interconnect macromodeling engine for RLCK power delivery. IEEE Trans Comput-Aided Des Integr Circuits Syst 24(6):797–806

    Article  Google Scholar 

  15. Li D, Tan SX-D, Wu L (2009). Itegr VLSI J 42:193–202

    Article  Google Scholar 

  16. Liao H (1995) Scattering-parameter-based macromodel for transient analysis of interconnect networks with nonlinear terminations. PhD thesis Univ., California at Santa Cruz

    Google Scholar 

  17. Miettinen P, Honkala M, Roos J, Valtonen M (2011) PartMOR: Partitioning-based realizable model-order reduction method for RLC circuits. IEEE Trans Comput-Aided Des Integr Circuits Syst 30 (3): 374–387

    Article  Google Scholar 

  18. Miettinen P, Honkala M, Roos J, Valtonen M (2012) Improving model-order methods by singularity exclusion. In: Mathematics in industry 16, scientific computing in electrical engineering SCEE 2010. Springer, pp 387–394

  19. Miettinen P, Honkala M, Roos J, Valtonen M (2012) Partitioning-based reduction of circuits with mutual inductances. In: Mathematics in industry 16, scientific computing in electrical engineering SCEE 2010. Springer, pp 395–404

  20. Miettinen P, Honkala M, Roos J, Valtonen M (2013) Admittance parameter formulation for realizable model-order reduction. In: Proceedings of the 2013 European conference on circuit theory and design (ECCTD), pp 1–4

  21. Miettinen P, Honkala M, Roos J, Valtonen M (2013) Sparsification of dense capacitive coupling if interconnect models. IEEE Trans Very Large Scale Integr (VLSI) Syst 21 (10): 1955–1959

    Article  Google Scholar 

  22. Nanoscale Integration and Modeling Group (2005) Predictive Technology Model. Arizona State University, Tempe. http://ptm.asu.edu

  23. Nicholas H (2008) Functions of Matrices: Theory and Computation Society for industrial and applied mathematics, Philadelphia

  24. Odabasioglu A, Celik M, Pileggi LT (1998). IEEE Trans Comput-Aided Des Integr Circuits Syst 17 (8): 645–654

    Article  Google Scholar 

  25. Palenius T, Roos J (2004) Comparison of reduced-order interconnect macromodels for time-domain simulation. IEEE Trans Microw Theory Tech 52 (9): 2240–2250

    Article  Google Scholar 

  26. Su YF, Wang J, Zeng X, Bai Z, Chiang C, Zhou D (2004) SAPOR: Second-order Arnoldi method for passive order reduction of RCS circuits. In: Proceedings of the IEEE ICCAD

  27. Tan S X-D, Hei L (2007) Advanced model order reduction techniques in VLSI design. NY, New York

    Book  Google Scholar 

  28. Yang F, Zeng X, Su Y, Zhou D (2007) RLCSYN: RLC equivalent circuit synthesis for structure-preserved reduced-order model of interconnect. In: Proceedings of the IEEE ISCAS

  29. Zhao W, Cao Y (2006) New generation of Predictive Technology Model for sub-45 nm early design exploration. IEEE Trans Electron Devices 53 (11): 2816–2823

    Article  Google Scholar 

  30. Zhong G, Koh C, Roy K (2002) On-chip interconnect modeling by wire duplication. In: Proceedings of the IEEE ICCAD

Download references

Acknowledgments

This work was partially funded by the Finnish national Graduate School in Electronics, Telecommunications and Automation. Financial support from the Nokia Foundation is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Miettinen.

Additional information

Responsible Editor: V. Champac

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miettinen, P., Honkala, M., Roos, J. et al. Benefits of Partitioning in a Projection-based and Realizable Model-order Reduction Flow. J Electron Test 30, 271–285 (2014). https://doi.org/10.1007/s10836-014-5451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-014-5451-y

Keywords

Navigation