Built-In-Self-Testing Techniques for Programmable Capacitor Arrays | Journal of Electronic Testing Skip to main content
Log in

Built-In-Self-Testing Techniques for Programmable Capacitor Arrays

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

This paper presents efficient built-in-self-testing (BIST) techniques for programmable capacitor arrays (PCAs) on field programmable analog array (FPAA) platforms. The proposed BIST circuits consist of switched-capacitor (SC) integrators and analog window comparators. Taking advantage of FPAA programmable resources, the proposed PCA BIST circuits can be implemented with very small hardware overhead. Also the impact of comparator threshold variations as well as other circuit parasitic effects on the efficiency of the proposed testing method is investigated. Effective circuit techniques along with new comparator designs are presented to minimize the adverse effect of comparator threshold variations. Finally, procedures for using the proposed BIST method to systematically test all PCAs on an FPAA platform are described and experimental results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anadign Inc., http://www.anadigm.com.

  2. A. Andrade, G. Vieira, and M. Lubaszewski, “Testing Global Interconnects of Field Programmable Analog Arrays,” Proc. 10th International Mixed-Signal Testing Workshop, 2004, pp. 231–246.

  3. T. Balen, A. Andrade Jr., F. Azais, M. Lubaszewski, and M. Renovell, “Testing the Configurable Analog Blocks of Field Programmable Analog Arrays,” Proc. International Test Conference, 2004, pp. 893–902.

  4. T. Balen, A. Andrade Jr., F. Azais, M. Lubaszewski, and M. Renovell, “An Approach to the Built-In Self-Test of Field Programmable Analog Arrays,” Proc. of IEEE VLSI Test Symposium, 2004, pp. 383–388.

  5. G. Bollati, S. Marchese, M. Demicheli, and R. Castello, “An Eighth-Order CMOS Low-Pass Filter with 30–120 MHz Tuning Range and Programmable Boost,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1056–1066, 2001.

    Article  Google Scholar 

  6. A. Bratt and I. Macbeth, “DPAD2—A Field Programmable Analog Array,” Analog Integrated Circuits and Signal Processing, vol. 17, no. 2, pp. 67–89, 1998.

    Article  Google Scholar 

  7. B. Calvo, S. Celma, and M.T. Sanz, “High-frequency Digitally Programmable Gain Amplifier,” IEE Electronics Letters, vol. 39, no. 15, pp. 1095–1096, 2003.

    Article  Google Scholar 

  8. Cypress Semiconductor, http://www.cypress.com.

  9. D. D’mello and G. Gulak, “Design Approaches to Field-Programmable Analog Integrated Circuits,” Analog Integrated Circuits and Signal Processing, vol. 17, no. 2, pp. 7–34, 1998.

    Article  Google Scholar 

  10. C. Dufaza and H. IHS, “Test Synthesis for DC Test and Maximal Diagnosis of Switched-Capacitor Circuits,” Proc. VLSI Test Symposium, 1997, pp. 252–260.

  11. F. Dulger, E. Sanchez-Sinencio, and J. Silva-Martinez, “A 1.3-V 5-mW Fully Integrated Tunable Bandpass Filter at 2.1 GHz in 0.35-/spl mu/m CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 918–928, 2003.

    Article  Google Scholar 

  12. S.R. Durbha, A. Laknaur, and H. Wang, “Investigating the Efficiency of Integrator-Based Programmable Capacitor Array Testing Circuits,” Proc. 24th VLSI Testing Symposium, pp. 320–325, Berkeley, California, 2006.

  13. M.A.A. El-Soud, R.A. AbdelRassoul, H.H. Soliman, and L.M. El-Ghanam, “Low-Power CMOS Circuits for Analog VLSI Programmable Neural Networks,” Proc. 15th International Conference on Microelectronics, 2003, pp. 14–17.

  14. J.E. Franca, “Analogue–Digital Window Comparator with Highly Flexible Programmability,” IEE Electronics Letters, pp. 2063–2064, 1991.

  15. C.C. Hsu and J.T. Wu, “A Highly Linear 125-MHz CMOS Switched-Resistor Programmable-Gain Amplifier,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1663–1670, 2003.

    Article  Google Scholar 

  16. D. Johns and K. Martin, Analog Integrated Circuit Design,Wiley, 1996.

  17. P. Kinget and M. Steyaert, “A Programmable Analog Cellular Neural Network CMOS Chip for High Speed Image Processing,” IEEE J. of Solid State Circuits, vol. 30, no. 3, pp. 235–243, 1995.

    Article  Google Scholar 

  18. V. Kolarik, M. Lubaszewski, and B. Courtois, “Designing Self-Exercising Analogue Checkers,” Proc. VLSI Test Symposium, 1994, pp. 252–257.

  19. V. Kolarik, S. Mir, M. Lubaszewski, and B. Courtois, “Analog Checkers with Absolute and Relative Tolerances,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 5, pp. 607–612, 1995.

    Article  Google Scholar 

  20. Lattice Semiconductor, http://www.latticesemi.com/.

  21. D. Lee, J. Yoo, and K. Choi, “Design Method and Automation of Comparator Generation for Flash A/D Converter,” Proc. ISQED, 2002, pp. 138–142.

  22. C.A. Looby and C. Lyden, “Field Programmable Analogue Arrays: A DFT View,” IEE Colloquium on Testing Mixed Signal Circuits and Systems, vol. 2/1–2/4, 1997.

  23. M. Lubaszewski, V. Kolarik, S. Mir, C. Nielsen, and B. Courtois, “Mixed-Signal Circuits and Boards for High Safety Applications,” Proc. European Design and Test Conference, 1995, pp. 34–39.

  24. M. Lubaszewski, S. Mir, V. Kolarik, C Nielsen, and B. Courtois, “Design of Self-Checking Fully Differential Circuits and Boards,” IEEE Trans. on VLSI, vol. 8, no. 2, pp. 113–128, 2000.

    Article  Google Scholar 

  25. M. Mar, B. Sullam, and E. Blom, “An Architecture for a Configurable Mixed-Signal Device,” IEEE J. of Solid-State Circuits, vol. 38, no. 3, pp. 565–568, 2003.

    Article  Google Scholar 

  26. Motolora Inc., EasyAnalog Design Software User's Manual.

  27. K. Nah and B. Park, “A 50-MHz dB-Linear Programmable-Gain Amplifier with 98-dB Dynamic Range and 2-dB Gain Steps for 3 V Power Supply,” IEEE Trans. VLSI, vol. 11, no. 2, pp. 218–223, 2003.

    Article  Google Scholar 

  28. T. Ndjountche and R. Unbehauen, “Improved Structures for Programmable Filters: Application in a Switched-Capacitor Adaptive Filter Design,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 6, no. 9, pp. 1137–1147, 1999.

    Article  Google Scholar 

  29. J.I. Osa, A. Carlosena, and A.J. Lopez-Martin, “MOSFET-C Filter with On-Chip Tuning and Wide Programming Range,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 10, pp. 944–951, 2001.

    Article  Google Scholar 

  30. B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun, “A Field Programmable Analog Array for CMOS Continuous-Time OTA-C Filter Applications,” IEEE J. of Solid-State Circuits, vol. 37, no. 2, pp. 125–136, 2002.

    Article  Google Scholar 

  31. A. Papoulis and S.U. Pillai, Probability, Random Variables and Stochastic Processes, McGraw-Hill Inc, 2002.

  32. G. Pereria, M. Lubaszewski, A. Andrade Jr., T.R. Balen, F. Azias, and M. Renovell, “Testing the Interconnect Networks and I/O Resources of Field Programmable Analog Arrays,” Proc. VLSI Test Symposium, 2005, pp. 389–394.

  33. R. Rodriguez-Montanes, D. Munoz, L. Balado, and J. Figueras, “Analog Switches in Programmable Analog Devices: Quiescent Defective Behaviours,” IEEE International On-Line Testing Workshop, 2002, pp. 99–103.

  34. R. Sanahuja, V. Barcons, L. Balado, and J. Figueras, “X–Y Zoning BIST: An FPAA Experiment,” Proc. Intl Mixed-Signal Test Workshop, 2002, pp. 237–243.

  35. R. Sanahuja, V. Barcons, L. Balado, and J. Figueras, “Testing Biquad Filters under Parametric Shifts Using X–Y Zoning,” Proc. Intl Mixed-Signal Test Workshop, 2003, pp. 283–288.

  36. T. Slaughter and C. Stroud, “Fault Injection Emulation for Field Programmable Analog Arrays,” Proc. Southwest Symp. Mixed-Signal Design, 2003, pp. 212–216.

  37. H. Stratigopoulos and Y. Makris, “An Analog Checker with Dynamically Adjustable Error Threshold for Fully Differential Circuits,” Proc. VLSI Test Symposium, 2003, pp. 209–214.

  38. J. Velasco-Medina, I. Rayane, and M. Nicolaidis, “On-Line BIST for Testing Analog Circuits,” Proc. ICCD, 1999, pp. 330–332.

  39. D.D. Venuto, M.J. Ohletz, and B. Ricco, “Automatic Repositioning Technique for Digital Cell Based Window Comparators and Implementation within Mixed-Signal DfT Schemes,” Proc. Intl. Symp. on Quality Electronic Design, 2003, pp. 431–437.

  40. B. Vinnakota and R. Harjani, “DFT for Digital Detection of Analog Parametric Faults in SC Filters,” IEEE Trans. CAD, vol. 19, no. 7, pp. 789–798, 2000.

    Google Scholar 

  41. B. Wang, T. Kajita, T. Sun, and G. Temes, “High-Accuracy Circuits for On-Chip Capacitive Ratio Testing and Sensor Readout,” IEEE Trans. Instrumentation and Measurement, 1998, pp. 16–20.

  42. H. Wang, S. Kulkarni, and S. Tragoudas, “Circuit Techniques for Field Programmable Analog Array On-Line Testing,” Proc. 10th International Mixed-Signal Testing Workshop, 2004, pp. 237–244.

  43. R.H. Williams and C.F. Hawkins, “The Economics of Guardband Placement,” in Proc. International Test Conference, 1993, pp. 218–225.

  44. R.S. Zebulum, D. Keymeulen, et al., “Experimental Results in Evolutionary Fault-Recovery for Field Programmable Analog Devices,” Proc. NASA/DoD Conf. on Evolvable Hardware, 2003, pp. 182–186.

  45. Y. Zhang and M.W.T. Wong, “Self-Testable Full Range Window Comparator,” Proc. Region 10 TENCON 2004, vol. 4, pp. 262–265, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Laknaur.

Additional information

Editor: S. Mir

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laknaur, A., Durbha, S.R. & Wang, H. Built-In-Self-Testing Techniques for Programmable Capacitor Arrays. J Electron Test 22, 449–462 (2006). https://doi.org/10.1007/s10836-006-9459-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-006-9459-9

Keywords

Navigation