A model for the transfer of control from the brain to the spinal cord through synaptic learning | Journal of Computational Neuroscience Skip to main content
Log in

A model for the transfer of control from the brain to the spinal cord through synaptic learning

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The spinal cord is essential to the control of locomotion in legged animals and humans. However, the actual circuitry of the spinal controller remains only vaguely understood. Here we approach this problem from the viewpoint of learning. More precisely, we assume the circuitry evolves through the transfer of control from the brain to the spinal cord, propose a specific learning mechanism for this transfer based on the error between the cord and brain contributions to muscle control, and study the resulting structure of the spinal controller in a simplified neuromuscular model of human locomotion. The model focuses on the leg rebound behavior in stance and represents the spinal circuitry with 150 muscle reflexes. We find that after learning a spinal controller has evolved that produces leg rebound motions in the absence of a central brain input with only three structural reflex groups. These groups contain individual reflexes well known from physiological experiments but thought to serve separate purposes in the control of human locomotion. Our results suggest a more holistic interpretation of the role of individual sensory projections in spinal networks than is common. In addition, we discuss potential neural correlates for the proposed learning mechanism that may be probed in experiments. Together with such experiments, neuromuscular models of spinal learning likely will become effective tools for uncovering the structure and development of the spinal control circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn, S.N., Guu, J.J., Tobin, A.J., Edgerton, V.R., & Tillakaratne, N.J. (2006). Use of c-fos to identify activity-dependent spinal neurons after stepping in intact adult rats. Spinal Cord, 44, 547–559.

    CAS  PubMed  Google Scholar 

  • Aoi, S., Ohashi, T., Bamba, R., Fujiki, S., Tamura, D., Funato, T., Senda, K., Ivanenko, Y., & Tsuchiya, K. (2019). Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis. Scientific Reports, 9(1), 1–13.

    CAS  Google Scholar 

  • Bailey, C.H., Giustetto, M., Huang, Y.Y., Hawkins, R.D., & Kandel, E.R. (2000). Is Heterosynaptic modulation essential for stabilizing hebbian plasiticity and memory. Nature Reviews Neuroscience, 1 (1), 11–20.

    CAS  PubMed  Google Scholar 

  • Barbeau, H., & Rossignol, S. (1987). Recovery of locomotion after chronic spinalization in the adult cat. Brain Research, 412(1), 84–95.

    CAS  PubMed  Google Scholar 

  • Bassett, D.S., Yang, M., Wymbs, N.F., & Grafton, S.T. (2015). Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 18(5), 744–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand, S., & Cazalets, J.-R. (2013). Activity-dependent synaptic plasticity and metaplasticity in spinal motor networks. Current Pharmaceutical Design, 19(24), 4498–4508.

    CAS  PubMed  Google Scholar 

  • Blickhan, R. (1989). The spring-mass model for running and hopping. J. of Biomech., 22, 1217–1227.

    CAS  Google Scholar 

  • Brown, T.G. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology, 48(1), 18–46.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Chen, X.Y., Jakeman, L.B., Chen, L., Stokes, B.T., & Wolpaw, J.R. (2006). Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats. The Journal of Neuroscience, 26(48), 12537–12543.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Courtine, G., Gerasimenko, Y., van den Brand, R., Yew, A., Musienko, P., Zhong, H., Song, B., Ao, Y., Ichiyama, R.M., Lavrov, I., Roy, R.R., Sofroniew, M.V., & Edgerton, V.R. (2009). Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nature Neuroscience, 12(10), 1333–1342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz, V. (2003). Spinal cord pattern generators for locomotion. Clinical Neurophysiology, 114 (8), 1379–1389.

    CAS  PubMed  Google Scholar 

  • Dorn, T.W., Wang, J.M., Hicks, J.L., & Delp, S.L. (2015). Predictive simulation generates human adaptations during loaded and inclined walking. PloS one, 10(4), e0121407.

    PubMed  PubMed Central  Google Scholar 

  • Doyon, J., Gabitov, E., Vahdat, S., Lungu, O., & Boutin, A. (2018). Current issues related to motor sequence learning in humans. Current Opinion in Behavioral Sciences, 20, 89–97.

    Google Scholar 

  • Dzeladini, F., van den Kieboom, J., & Ijspeert, A. (2014). The contribution of a central pattern generator in a reflex-based neuromuscular model. Frontiers in Human Neuroscience, 8, 1–18.

    Google Scholar 

  • Edgerton, V.R., Tillakaratne, N.J., Bigbee, A.J., de Leon, R.D., & Roy, R.R. (2004). Plasticity of the spinal neural circuitry after injury. Annual Review of Neuroscience, 27, 145–167.

    CAS  PubMed  Google Scholar 

  • Ekeberg, O., & Pearson, K. (2005). Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. Journal of Neurophysiology, 94(6), 4256–4268.

    PubMed  Google Scholar 

  • Forssberg, H., Grillner, S., & Halbertsma, J. (1980). The locomotion of the low spinal cat I. Coordination within a hindlimb. Acta Physiologica Scandinavica, 108(3), 269–281.

    CAS  PubMed  Google Scholar 

  • Geyer, H., Seyfarth, A., & Blickhan, R. (2003). Positive force feedback in bouncing gaits? Proceedings of the Royal Society B: Biological Sciences, 270(1529), 2173–2183.

    PubMed  Google Scholar 

  • Geyer, H., Seyfarth, A., & Blickhan, R. (2006). Compliant leg behaviour explains the basic dynamics of walking and running. Proceedings of the Royal Society of London B, 273, 2861–2867.

    Google Scholar 

  • Geyer, H., & Herr, H.M. (2010). A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(3), 263–273.

    PubMed  Google Scholar 

  • Gu̇nther, M., & Ruder, H. (2003). Synthesis of two-dimensional human walking: a test of the λ-model. Biological Cybernetics, 89, 89–106.

    PubMed  Google Scholar 

  • Haith, A.M., & Krakauer, J.W. (2013). Theoretical models of motor control and motor learning. Routledge Handbook of Motor Control and Motor Learning.

  • Harkema, S.J. (2001). Neural plasticity after human spinal cord injury: Application of locomotor training to the rehabilitation of walking. The Neuroscientist, 7(5), 455–468.

    CAS  PubMed  Google Scholar 

  • Haruno, M., Wolpert, D.M., & Kawato, M. (2001). MOSAIC Model for sensorimotor learning and control. Neural Computation, 13(10), 2201–2220.

    CAS  PubMed  Google Scholar 

  • Hase, K., & Yamazaki, N. (2002). Computer simulation study of human locomotion with a three-dimensional entire-body neuro-musculo-skeletal nodel. JSME International Journal Series C Mechnical Systems, Machine Elements and Manufacturing, 45(4), 1040–1050.

    Google Scholar 

  • Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, S.M.A., Riedmiller, M., & Silver, D. (2017). Emergence of locomotion behaviours in rich environments. arXiv:1707.02286.

  • Hubli, M., & Dietz, V. (2013). The physiological basis of neurorehabilitation-locomotor training after spinal cord injury. Journal of Neuroengineering and Rehabilitation, 10(1), 5.

    PubMed  PubMed Central  Google Scholar 

  • Hultborn, H. (2001). State-dependent modulation of sensory feedback. Journal of Physiology, 533(1), 5–13.

    CAS  PubMed  Google Scholar 

  • Ijspeert, A.J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 21(4), 642– 653.

    PubMed  Google Scholar 

  • Jankowska, E. (2013). Spinal Interneurons. In Pfaff, D. W., & Volkow, N. D. (Eds.) Neuroscience in the 21st Century: From Basic to Clinical, chapter 30 (pp. 1063–1099): Springer.

  • Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57(3), 169–185.

    CAS  PubMed  Google Scholar 

  • Kawato, M., & Gomi, H. (1992). A computational model of four regions of the cerebellum based on feedback-error learning. Biological Cybernetics, 68(2), 95–103.

    CAS  PubMed  Google Scholar 

  • Kiehn, O. (2016). Decoding the organization of spinal circuits that control locomotion. Nature Reviews Neuroscience, 17(4), 224–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl, N., & Stone, P. (2004). Policy gradient reinforcement learning for fast quadrupedal locomotion. In IEEE International Conference on Robotics and Automation. 2004, Proceedings. ICRA ’04, (Vol. 3 pp. 2619–2624).

  • Manoonpong, P., Geng, T., Kulvicius, T., Porr, B., & Wȯrgȯtter, F. (2007). Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Computational Biology, 3(7), e134.

    PubMed  PubMed Central  Google Scholar 

  • Markin, S.N., Klishko, A.N., Shevtsova, N.A., Lemay, M.A., Prilutsky, B.I., & Rybak, I.A. (2016). A Neuromechanical Model of Spinal Control of Locomotion. In Prilutsky, B., & Edwards, D. (Eds.) Neuromechanical modeling of posture and locomotion. Springer Series in Computational Neuroscience (pp. 21–65). New York: Springer.

  • Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004). Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47, 79– 91.

    Google Scholar 

  • Nielsen, J.B., & Sinkjaer, T. (2002). Afferent feedback in the control of human gait. Journal of Electromyography and Kinesiology, 12(3), 213–217.

    CAS  PubMed  Google Scholar 

  • Pierrot-Desseilligny, E., & Burke, D.C. (2012). The circuitry of the human spinal cord: spinal and corticospinal mechanisms of movement. Cambridge: Cambridge University Press.

    Google Scholar 

  • Poldrack, R.A., Sabb, F.W., Foerde, K., Tom, S.M., Asarnow, R.F., Bookheimer, S.Y., & Knowlton, B.J. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25(22), 5356–5364.

    CAS  PubMed  Google Scholar 

  • Porr, B., & Wȯrgȯtter, F. (2003). Isotropic sequence order learning. Neural Computation, 15 (4), 831–864.

    PubMed  Google Scholar 

  • Prochazka, A., & Yakovenko, S. (2007). The neuromechanical tuning hypothesis. Progress in Brain Research, 165, 255–265.

    PubMed  Google Scholar 

  • Quilgars, C., & Bertrand, S.S. (2019). Activity-dependent synaptic dynamics in motor circuits of the spinal cord. Current Opinion in Physiology, 8, 44–49.

    Google Scholar 

  • Raineteau, O., & Schwab, M.E. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nature Reviews Neuroscience, 2(4), 263–273.

    CAS  PubMed  Google Scholar 

  • Rejc, E., Angeli, C.A., Atkinson, D., & Harkema, S.J. (2017). Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Scientific Reports, 7(1), 13476.

    PubMed  PubMed Central  Google Scholar 

  • Rossignol, S. (2006). Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1473), 1647–1671.

    CAS  Google Scholar 

  • Rybak, I.A., Shevtsova, N.A., Lafreniere-Roula, M., & McCrea, D.A. (2006). Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. Journal of Physiology, 577(Pt 2), 617–639.

    CAS  PubMed  Google Scholar 

  • Seyfarth, A., Gu̇nther, M., & Blickhan, R. (2001). Stable operation of an elastic three-segmented leg. Biological Cybernetics, 84, 365–382.

    CAS  PubMed  Google Scholar 

  • Song, S., & Geyer, H. (2015). A neural circuitry that emphasizes spinal feedbacks generates diverse behaviours of human locomotion. Journal of Physiology, 593(16), 3493–3511.

    CAS  PubMed  Google Scholar 

  • Stuart, G., Spruston, N., & Häusser, M. (Eds.) (2016). Dendrites, 3rd edn. Oxford: Oxford University Press.

    Google Scholar 

  • Taga, G., Yamaguchi, Y., & Shimizu, H. (1991). Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics, 65(3), 147–159.

    CAS  PubMed  Google Scholar 

  • Thompson, A.K., & Wolpaw, J.R. (2014). Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help. The Neuroscientist, 21(2), 203–215.

    PubMed  PubMed Central  Google Scholar 

  • Vahdat, S., Lungu, O., Cohen-Adad, J., Marchand-Pauvert, V., Benali, H., & Doyon, J. (2015). Simultaneous brain-cervical cord fMRI reveals intrinsic spinal cord plasticity during motor sequence learning. PLoS Biology, 13(6), e1002186.

    PubMed  PubMed Central  Google Scholar 

  • Wang, J.M., Hamner, S.R., Delp, S.L., & Koltun, V. (2012). Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Transactions on Graphics, 31(4), 25.

    PubMed  PubMed Central  Google Scholar 

  • Widrow, B., & Hoff, M.E. (1960). Adaptive switching circuits. In 1960 IRE WESCON Convention Record (pp. 96–104).

  • Wolpaw, J.R., & Tennissen, A.M. (2001). Activity-dependent spinal cord plasticity in health and disease. Annual Review of Neuroscience, 24(1), 807–843.

    CAS  PubMed  Google Scholar 

  • Wolpaw, J.R. (2010). What can the spinal cord teach us about learning and memory? The Neuroscientist, 16(5), 532–549.

    PubMed  Google Scholar 

  • Wolpert, D.M., & Kawato, M. (1998a). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7-8), 1317–1329.

    CAS  PubMed  Google Scholar 

  • Wolpert, D.M., Miall, R., & Kawato, M. (1998b). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.

    CAS  PubMed  Google Scholar 

  • Wolpert, D.M., Diedrichsen, J., & Flanagan, J.R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12, 739–751.

    CAS  PubMed  Google Scholar 

  • Yuste, R., & Tank, D.W. (1996). Dendritic integration in mammalian neurons, a century after Cajal. Neuron, 16(4), 701–716.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for helpful comments and suggestions, which led to substantial improvements of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Geyer.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Charles Wilson

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sar, P., Geyer, H. A model for the transfer of control from the brain to the spinal cord through synaptic learning. J Comput Neurosci 48, 365–375 (2020). https://doi.org/10.1007/s10827-020-00767-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-020-00767-0

Keywords

Navigation