Intrinsic dendritic filtering gives low-pass power spectra of local field potentials | Journal of Computational Neuroscience Skip to main content

Advertisement

Log in

Intrinsic dendritic filtering gives low-pass power spectra of local field potentials

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The local field potential (LFP) is among the most important experimental measures when probing neural population activity, but a proper understanding of the link between the underlying neural activity and the LFP signal is still missing. Here we investigate this link by mathematical modeling of contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low-pass filtered than spectra recorded further away. Some recording positions display striking band-pass characteristics of the LFP. The frequency dependence of the properties of the current dipole moment set up by the synaptic input current is found to qualitatively account for several salient features of the observed LFP. Two approximate schemes for calculating the LFP, the dipole approximation and the two-monopole approximation, are tested and found to be potentially useful for translating results from large-scale neural network models into predictions for results from electroencephalographic (EEG) or electrocorticographic (ECoG) recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arieli, A. (1992). Novel strategies to unravel mechanisms of cortical function: From macro- to micro-electrophysiological recordings. In A. Aertsen, & V. Braitenberg (Eds.), Information processing in the cortex. New York: Springer.

    Google Scholar 

  • Bedard, C., Kröger H., & Destexhe A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal, 86, 1829–1842.

    Article  CAS  PubMed  Google Scholar 

  • Bedard, C., Kröger, H., & Destexhe, A. (2006a). Model of low-pass filtering of local field potentials. Physical Review E, 73, 051911.

    Article  CAS  Google Scholar 

  • Bedard, C., Kröger, H., & Destexhe, A. (2006b). Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Physical Review Letters, 97, 118102.

    Article  CAS  PubMed  Google Scholar 

  • Bedard, C., & Destexhe, A. (2009) Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophysical Journal, 96, 2589–2603.

    Article  CAS  PubMed  Google Scholar 

  • Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23, 11167–11177.

    CAS  PubMed  Google Scholar 

  • Berens, P., Keliris, G. A., Ecker, A. S., Logothetis, N., & Tolias, A. S. (2008). Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2(2). doi:10.3389/neuro.06/002.2008.

    PubMed  Google Scholar 

  • Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience, 7, 446–451.

    Article  PubMed  Google Scholar 

  • Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.

    Book  Google Scholar 

  • Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Church, P., Leduc, A., & Beique, R. A. (1985). Sensitivity analysis of depth EEG electrodes to dipolar electric sources. IEEE Transactions on Biomedical Engineering, 32, 554–560.

    Article  CAS  PubMed  Google Scholar 

  • Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93, 91–108.

    Article  CAS  PubMed  Google Scholar 

  • Di, S., Baumgartner, C., & Barth, D. S., (1990). Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. Journal of Neurophysiology, 63, 832–840.

    CAS  PubMed  Google Scholar 

  • Einevoll, G. T., Pettersen, K. H., Devor, A., Ulbert, I., Halgren, E., & Dale, A. M. (2007). Laminar population analysis: Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. Journal of Neurophysiology, 97, 2174–2190.

    Article  PubMed  Google Scholar 

  • Freeman, W. J. (1980). Use of spatial deconvolution to compensate distortion of EEG by volume conduction. IEEE Transactions on Biomedical Engineering, 27, 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, W. J., Holmes, M. D., Burke, B. C., & Vanthalo, S. (2003). Spatial spectra of scalp EEG and EMB from awake humans. Clinical Neurophysiology, 114, 1053–1068.

    Article  PubMed  Google Scholar 

  • Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine & Biology, 41, 2271–2293.

    Article  CAS  Google Scholar 

  • Godey, B., Schwartz, D., de Graaf, J. B., Chauvel, P., & Liegeois-Chauvel, C. (2001). Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: A comparison of data in the same patients. Clinical neurophysiology, 112, 1850–1859.

    Article  CAS  PubMed  Google Scholar 

  • Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., et al. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation 5, 25.

    Article  PubMed  Google Scholar 

  • Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 413–449.

    Article  Google Scholar 

  • Hines, M. L, Davison, A. P. & Muller E. (2009). NEURON and Python. Frontiers in Neuroinformatics, 3, 1.

    Article  PubMed  Google Scholar 

  • Holt, G. R. & Koch, C. (1999). Electrical interactions via the extracellular potential near cell bodies. Journal of Computational Neuroscience, 6, 169–184.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, J. (1998). Classical Electrodynamics. NJ: Wiley, Hoboken.

    Google Scholar 

  • Jirsa, V. K., & Haken, H. (1997). A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D, 99, 503–526.

    Article  Google Scholar 

  • Jirsa, V. K., Jantzen, K. J., Fuchs, A., & Kelso, J. A. S. (2002). Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Transactions on Medical Imaging, 21, 493–504.

    Article  PubMed  Google Scholar 

  • Johnston, D., & Wu, S. M.-S. (1995) Foundations of cellular neurophysiology, (Chapter 14). Cambridge, MA: MIT Press.

    Google Scholar 

  • Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61, 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Koch, C. (1998). Biophysics of computation. New York, NY: Oxford.

    Google Scholar 

  • Kreiman, G., Hung, C. P, Kraskov, A., Quiroga, R. Q., Poggio, T., & DiCarlo, J. J. (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron, 49, 433–445.

    Article  CAS  PubMed  Google Scholar 

  • Lindén, H., Pettersen, K. H., & Einevoll, G. T. (2008). Frequency scaling in local field potentials: A neuron population forward modelling study Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics, 2008. doi:10.3389/conf.neuro.11.2008.01.026.

    Google Scholar 

  • Lindén, H., Pettersen, K. H., Tetzlaff, T., Potjans, T., Denker, M., Diesmann, M., et al. (2009a). Estimating the spatial range of local field potentials in a cortical population model. BMC Neuroscience, 10(1), 224.

    Article  Google Scholar 

  • Lindén, H., Potjans, T. C., Einevoll, G. T., Grün, S., & Diesmann, M. (2009b). Modeling the local field potential by a large-scale layered cortical network model. Frontiers in Neuroinformatics, Conference Abstract: 2nd INCF Congress of Neuroinformatics. doi:10.3389/conf.neuro.11.2009.08.046.

  • Liu, J., & Newsome, W. T. (2006). Local field potential in cortical area MT. Stimulus tuning and behavioral correlations. Journal of Neuroscience, 26, 7779–7790.

    Article  CAS  PubMed  Google Scholar 

  • Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007). In vivo measurement of cortical impedance spectrum in monkeys: Implications for signal propagation. Neuron, 55, 809–823.

    Article  CAS  PubMed  Google Scholar 

  • Lorente de Nó, R. (1947). Action potential of the motoneurons of the hypoglossus nucleus. Journal of Cellular and Comparative Physiology, 29, 207–287.

    Article  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni, A., Panzeri, S., Logothetis, N. K., & Brunel, N. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Computers in Biology, 4, e1000239.

    Article  Google Scholar 

  • Miller, K. J., Sorensen, L. B., Ojemann, J. G., & den Nijs, M. (2009). Power-law scaling in the brain surface electric potential. PLoS Computers in Biology, 5, e1000609.

    Article  Google Scholar 

  • Milstein, J. N., & Koch, C. (2008). Dynamic moment analysis of the extracellular electric field of a biologically realistic spiking neuron. Neural Computation, 20, 2070–2084.

    Article  PubMed  Google Scholar 

  • Milstein, J., Mormann, F., Fried, I., & Koch., C (2009). Neuronal shot noise and Brownian 1/f2 behavior in the local field potential. PLoS ONE, 4, e4338.

    Article  Google Scholar 

  • Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–99.

    CAS  PubMed  Google Scholar 

  • Murakami, S., & Okada, Y. (2006). Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. Journal of Physiology, 575, 925–936.

    Article  CAS  PubMed  Google Scholar 

  • Nauhaus, I., Busse, L., Carandini, M., & Ringach, D. L. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12, 70–76.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, C., & Freeman, J. A. (1975). Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology, 38, 356–368.

    CAS  PubMed  Google Scholar 

  • Normann, R. A., Maynard, E. M., Rousche, P. J., & Warren, D. J. (1999). A neural interface for a cortical vision prosthesis. Vision Research, 39, 2577–2587.

    Article  CAS  PubMed  Google Scholar 

  • Nunez, P. L., & Srinavasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Pettersen, K. H., & Einevoll, G. T. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysical Journal, 94, 784–802.

    Article  CAS  PubMed  Google Scholar 

  • Pettersen, K. H., Hagen, E., & Einevoll, G. T. (2008). Estimation of population firing rates and current source densities from laminar electrode recordings. Journal of Computational Neuroscience, 24, 291–313.

    Article  PubMed  Google Scholar 

  • Pettersen, K. H., Lindén, H., Dale, A. M., & Einevoll, G. T. (2010). Extracellular spikes and current-source density. In R. Brette, & A. Destexhe (Eds.), Handbook of neural activity measurements. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Plonsey, R. (1969). Bioelectric phenomena. New York: McGraw-Hill.

    Google Scholar 

  • Plonsey, R., & Barr, R. C. (2007). Bioelectricity: A quantitative approach. New York: Springer.

    Google Scholar 

  • Pritchard, W. S. (1992). The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. International Journal of Neuroscience, 66, 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Rall, W. (1962). Electrophysiology of a dendritic neuron model. Biophysical Journal, 2, 145–167.

    Article  CAS  PubMed  Google Scholar 

  • Xing, D., Yeh, C.-I., & Shapley, R. M. (2009). Spatial spread of the local field potential and its laminar variation in visual cortex. Journal of Neuroscience, 29, 11540–11549.

    Article  CAS  PubMed  Google Scholar 

  • Yvert, B., Fischer, C., Bertrand, O., & Pernier, J. (2001). Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. NeuroImage, 28, 140–153.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Norway (eScience, NOTUR). We thank one of the reviewers for bringing relevant literature on human depth-resolved LFP recordings to our attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaute T. Einevoll.

Additional information

Action Editor: Abraham Zvi Snyder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindén, H., Pettersen, K.H. & Einevoll, G.T. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29, 423–444 (2010). https://doi.org/10.1007/s10827-010-0245-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0245-4

Keywords

Navigation