Data quality in drug discovery: the role of analytical performance in ligand binding assays | Journal of Computer-Aided Molecular Design Skip to main content

Advertisement

Log in

Data quality in drug discovery: the role of analytical performance in ligand binding assays

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Despite its importance and all the considerable efforts made, the progress in drug discovery is limited. One main reason for this is the partly questionable data quality. Models relating biological activity and structures and in silico predictions rely on precisely and accurately measured binding data. However, these data vary so strongly, such that only variations by orders of magnitude are considered as unreliable. This can certainly be improved considering the high analytical performance in pharmaceutical quality control. Thus the principles, properties and performances of biochemical and cell-based assays are revisited and evaluated. In the part of biochemical assays immunoassays, fluorescence assays, surface plasmon resonance, isothermal calorimetry, nuclear magnetic resonance and affinity capillary electrophoresis are discussed in details, in addition radiation-based ligand binding assays, mass spectrometry, atomic force microscopy and microscale thermophoresis are briefly evaluated. In addition, general sources of error, such as solvent, dilution, sample pretreatment and the quality of reagents and reference materials are discussed. Biochemical assays can be optimized to provide good accuracy and precision (e.g. percental relative standard deviation <10 %). Cell-based assays are often considered superior related to the biological significance, however, typically they cannot still be considered as really quantitative, in particular when results are compared over longer periods of time or between laboratories. A very careful choice of assays is therefore recommended. Strategies to further optimize assays are outlined, considering the evaluation and the decrease of the relevant error sources. Analytical performance and data quality are still advancing and will further advance the progress in drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. ACE can also deal with impure samples.

References

  1. Kramer C, Lewis R (2012) QSARs, data and error in the modern age of drug discovery. Curr Top Med Chem 12(17):1896–1902

    Article  CAS  Google Scholar 

  2. Kramer C, Kalliokoski T, Gedeck P et al (2012) The experimental uncertainty of heterogeneous public K(i) data. J Med Chem 55(11):5165–5173

    Article  CAS  Google Scholar 

  3. Kalliokoski T, Kramer C, Vulpetti A et al (2013) Comparability of mixed IC50 data—a statistical analysis. PLoS One 8(4):e61007. doi:10.1371/journal.pone.0061007

    Article  CAS  Google Scholar 

  4. Karr JR, Sanghvi JC, Macklin DN et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401

    Article  CAS  Google Scholar 

  5. Macklin DN, Ruggero NA, Covert MW (2014) The future of whole-cell modeling. Curr Opin Biotechnol 28:111–115

    Article  CAS  Google Scholar 

  6. ICH ICH Q2(R1) Validation of analytical procedures: text and methodology. http://www.gmp-compliance.org/guidemgr/files/Q2(R1).PDF

  7. Chodera JD, Mobley DL (2013) Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu Rev Biophys 42:121–142

    Article  CAS  Google Scholar 

  8. Gashaw I (2014) Molecular target validation in preclinical drug discovery. Eur Drug Target Rev 1:61–64

    Google Scholar 

  9. Findlay J, Smith WC, Lee JW et al (2000) Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J Pharm Biomed Anal 21(6):1249–1273

    Article  CAS  Google Scholar 

  10. Lee JW, Devanarayan V, Barrett YC et al (2006) Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res 23(2):312–328

    Article  CAS  Google Scholar 

  11. Viswanathan CT, Bansal S, Booth B et al (2007) Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. Pharm Res 24(10):1962–1973

    Article  CAS  Google Scholar 

  12. Ray CA, Bowsher RR, Smith WC et al (2005) Development, validation, and implementation of a multiplex immunoassay for the simultaneous determination of five cytokines in human serum. J Pharm Biomed Anal 36(5):1037–1044

    Article  CAS  Google Scholar 

  13. Petzold A, Altintas A, Andreoni L et al (2010) Neurofilament ELISA validation. J Immunol Methods 352(1–2):23–31

    Article  CAS  Google Scholar 

  14. Cummings J, Zhou C, Dive C (2011) Application of the β-expectation tolerance interval to method validation of the M30 and M65 ELISA cell death biomarker assays. J Chromatogr B Anal Technol Biomed Life Sci 879(13–14):887–893

    Article  CAS  Google Scholar 

  15. Food and Drug Administration (2013) Guidance for industry: bioanalytical method validation. Food and Drug Administration, Rockville

    Google Scholar 

  16. International Conference on Harmonization (ICH) (1996) ICH Harmonised tripartite guideline, Q2 (R1) validation of analytical procedures: text and methodology, International Conference on Harmonization, http://www.ich.org

  17. European Medicine Agency (2011) Guideline on bioanalytical method validation, EMEA/CHMP/EWP/192217/2009, Rev.1Corr, http://www.ema.europa.eu

  18. Schellenberg S, Grenacher B, Kaufmann K et al (2008) Analytical validation of commercial immunoassays for the measurement of cardiovascular peptides in the dog. Vet J 178(1):85–90

    Article  CAS  Google Scholar 

  19. Valentin M, Ma S, Zhao A et al (2011) Validation of immunoassay for protein biomarkers: bioanalytical study plan implementation to support pre-clinical and clinical studies. J Pharm Biomed Anal 55(5):869–877

    Article  CAS  Google Scholar 

  20. Escribano D, Gutiérrez AM, Martínez Subiela S et al (2012) Validation of three commercially available immunoassays for quantification of IgA, IgG, and IgM in porcine saliva samples. Res Vet Sci 93(2):682–687

    Article  CAS  Google Scholar 

  21. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1(7):515–528

    Article  CAS  Google Scholar 

  22. Rich RL, Myszka DG (2004) Why you should be using more SPR biosensor technology. Drug Discov Today Technol 1(3):301–308

    Article  CAS  Google Scholar 

  23. Couture M, Zhao SS, Masson J (2013) Modern surface plasmon resonance for bioanalytics and biophysics. Phys Chem Chem Phys 15(27):11190–11216

    Article  CAS  Google Scholar 

  24. GE Healthcare (2005) Biacore sensor surface handbook, BR-1005-71 edn AB, www.biacore.com

  25. Thillaivinayagalingam P, Gommeaux J, McLoughlin M et al (2010) Biopharmaceutical production: applications of surface plasmon resonance biosensors. J Chromatogr B Anal Technol Biomed Life Sci 878(2):149–153

    Article  CAS  Google Scholar 

  26. Dillon PP, Daly SJ, Manning BM et al (2003) Immunoassay for the determination of morphine-3-glucuronide using a surface plasmon resonance-based biosensor. Biosens Bioelectron 18(2–3):217–227

    Article  CAS  Google Scholar 

  27. Indyk HE, Filonzi EL (2003) Determination of immunoglobulin G in bovine colostrum and milk by direct biosensor SPR-immunoassay. J AOAC Int 86(2):386–393

    CAS  Google Scholar 

  28. Mason S, La S, Mytych D et al (2003) Validation of the BIACORE 3000 platform for detection of antibodies against erythropoietic agents in human serum samples. Curr Med Res Opin 19(7):651–659

    Article  CAS  Google Scholar 

  29. GE Healthcare (2007) Application note 48: validation of a concentration assay using Biacore C, 28-9214-22 AA, www.biacore.com

  30. Campbell K, Barnes P, Haughey SA et al (2013) Development and single laboratory validation of an optical biosensor assay for tetrodotoxin detection as a tool to combat emerging risks in European seafood. Anal Bioanal Chem 405(24):7753–7763

    Article  CAS  Google Scholar 

  31. Devlin S, Meneely JP, Greer B et al (2014) Production of a broad specificity antibody for the development and validation of an optical SPR screening method for free and intracellular microcystins and nodularin in cyanobacteria cultures. Talanta 122:8–15

    Article  CAS  Google Scholar 

  32. Gassner C, Lipsmeier F, Metzger P et al (2015) Development and validation of a novel SPR-based assay principle for bispecific molecules. J Pharm Biomed Anal 102:144–149

    Article  CAS  Google Scholar 

  33. DiGiacomo RA, Xie L, Cullen C et al (2004) Development and validation of a kinetic assay for analysis of anti-human interleukin-5 monoclonal antibody (SCH 55700) and human interleukin-5 interactions using surface plasmon resonance. Anal Biochem 327(2):165–175

    Article  CAS  Google Scholar 

  34. Papalia GA, Leavitt S, Bynum MA et al (2006) Comparative analysis of 10 small molecules binding to carbonic anhydrase II by different investigators using Biacore technology. Anal Biochem 359(1):94–105

    Article  CAS  Google Scholar 

  35. Katsamba PS, Navratilova I, Calderon-Cacia M et al (2006) Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users. Anal Biochem 352(2):208–221

    Article  CAS  Google Scholar 

  36. GE Healthcare (2007) Application note 38: rapid development of a GMP-compliant assay for the determination of antibody concentration, 28-9214-21AA, www.biacore.com

  37. Sridharan R, Zuber J, Connelly SM et al (2014) Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Biochim Biophys Acta 1838(1 Pt A):15–33

    Article  CAS  Google Scholar 

  38. Middleton RJ, Kellam B (2005) Fluorophore-tagged GPCR ligands. Curr Opin Chem Biol 9(5):517–525

    Article  CAS  Google Scholar 

  39. Yakimchuk K (2011) Protein receptor–ligand interaction/binding assays. Mater Methods 1. doi:10.13070/mm.en.1.199

  40. Ma Z, Du L, Li M (2014) Toward fluorescent probes for G-protein-coupled receptors (GPCRs). J Med Chem 57(20): 8187–8203

  41. Ferrero ValentinaEV, Di Nardo G, Catucci G et al (2012) Fluorescence detection of ligand binding to labeled cytochrome P450 BM3. Dalton Trans 41(7):2018–2025

    Article  CAS  Google Scholar 

  42. Lottspeich F (2012) Bioanalytik, 3rd edn. Spektrum, Heidelberg

    Google Scholar 

  43. Aretz J, Rademacher C (2015) Fragmentbasierte Wirkstoffentwicklung. Nachr Chem 63:116–121

    Article  CAS  Google Scholar 

  44. Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5(5):297–306

    Article  CAS  Google Scholar 

  45. Tota MR, Xu L, Sirotina A et al (1995) Interaction of [fluorescein-Trp25] glucagon with the human glucagon receptor expressed in Drosophila Schneider 2 cells. J Biol Chem 270(44):26466–26472

    Article  CAS  Google Scholar 

  46. Sklar LA, Finney DA, Oades ZG et al (1984) The dynamics of ligand–receptor interactions. Real-time analyses of association, dissociation, and internalization of an N-formyl peptide and its receptors on the human neutrophil. J Biol Chem 259(9):5661–5669

    CAS  Google Scholar 

  47. Rossi AM, Taylor CW (2011) Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc 6(3):365–387

    Article  CAS  Google Scholar 

  48. Loison S, Cottet M, Orcel H et al (2012) Selective fluorescent nonpeptidic antagonists for vasopressin V2 GPCR: application to ligand screening and oligomerization assays. J Med Chem 55(20):8588–8602

    Article  CAS  Google Scholar 

  49. Waller A, Pipkorn D, Sutton KL et al (2001) Validation of flow cytometric competitive binding protocols and characterization of fluorescently labeled ligands. Cytometry 45(2):102–114

    Article  CAS  Google Scholar 

  50. Vauthier V, Derviaux C, Douayry N et al (2013) Design and validation of a homogeneous time-resolved fluorescence-based leptin receptor binding assay. Anal Biochem 436(1):1–9

    Article  CAS  Google Scholar 

  51. de Boer T, Otjens D, Muntendam A et al (2004) Development and validation of fluorescent receptor assays based on the human recombinant estrogen receptor subtypes alpha and beta. J Pharm Biomed Anal 34(3):671–679

    Article  CAS  Google Scholar 

  52. Ludewig S, Kossner M, Schiller M et al (2010) Enzyme kinetics and hit validation in fluorimetric protease assays. Curr Top Med Chem 10(3):368–382

    Article  CAS  Google Scholar 

  53. Ludewig SK (2011) Entwicklung von Cysteinprotease-Assays zur Validierung von Cysteinprotease-Inhibitoren am Beispiel der SARS-CoV Hauptprotease. Dissertation, TU Braunschweig

  54. Hann MM, Keserü GM (2012) Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat Rev Drug Discov 11(5):355–365

    Article  CAS  Google Scholar 

  55. Ferenczy GG, Keserũ GM (2010) Thermodynamics guided lead discovery and optimization. Drug Discov Today 15(21–22):919–932

    Article  CAS  Google Scholar 

  56. Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9(1):23–27

    Article  CAS  Google Scholar 

  57. Núñez S, Venhorst J, Kruse CG (2012) Target–drug interactions: first principles and their application to drug discovery. Drug Discov Today 17(1–2):10–22

    Article  CAS  Google Scholar 

  58. Brown RK, Brandts JM, O’Brien R, Peters WB (2009) ITC-derived binding constants: using microgram quantities of protein label-free biosensors. In: Cooper MA (ed) Label-free biosensors. Cambridge University Press, Cambridge, pp 223–250

  59. Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84:79–113

    Article  CAS  Google Scholar 

  60. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125(48):14859–14866

    Article  CAS  Google Scholar 

  61. Ferenczy GG, Keseru GM (2012) Chapter 2. Thermodynamics of ligand binding. In: Luque J, Barril X (eds) Physico-chemical and computational approaches to drug discovery. Royal Society of Chemistry, Cambridge, pp 23–79

    Chapter  Google Scholar 

  62. Grüner S, Neeb M, Barandun LJ et al (2014) Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics. Biochim Biophys Acta 1840(9):2843–2850

    Article  CAS  Google Scholar 

  63. Tellinghuisen J (2003) A study of statistical error in isothermal titration calorimetry. Anal Biochem 321(1):79–88

    Article  CAS  Google Scholar 

  64. Baranauskiene L, Petrikaite V, Matuliene J et al (2009) Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int J Mol Sci 10(6):2752–2762

    Article  CAS  Google Scholar 

  65. Holdgate GA, Ward WalterHJ (2005) Measurements of binding thermodynamics in drug discovery. Drug Discov Today 10(22):1543–1550

    Article  CAS  Google Scholar 

  66. Campos-Olivas R (2011) NMR screening and hit validation in fragment based drug discovery. Curr Top Med Chem 11(1):43–67

    Article  CAS  Google Scholar 

  67. Dalvit C (2009) NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 14(21–22):1051–1057

    Article  CAS  Google Scholar 

  68. Homans SW (2004) NMR spectroscopy tools for structure-aided drug design. Angew Chem Int Ed Engl 43(3):290–300

    Article  CAS  Google Scholar 

  69. Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104(8):3641–3676

    Article  CAS  Google Scholar 

  70. Ludwig C, Guenther UL (2009) Ligand based NMR methods for drug discovery. Front Biosci (Landmark Ed) 14:4565–4574

    Article  CAS  Google Scholar 

  71. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 42(8):864–890

    Article  CAS  Google Scholar 

  72. Pellecchia M, Bertini I, Cowburn D et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7(9):738–745

    Article  CAS  Google Scholar 

  73. Skinner AL, Laurence JS (2008) High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands. J Pharm Sci 97(11):4670–4695

    Article  CAS  Google Scholar 

  74. Zartler ER, Mo H (2007) Practical aspects of NMR-based fragment discovery. Curr Top Med Chem 7(16):1592–1599

    Article  CAS  Google Scholar 

  75. Hajduk PJ, Meadows RP, Fesik SW (1997) Discovering high-affinity ligands for proteins. Science 278(5337):497–499

    Article  CAS  Google Scholar 

  76. Shuker SB, Hajduk PJ, Meadows RP et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  CAS  Google Scholar 

  77. Schumann FH, Riepl H, Maurer T et al (2007) Combined chemical shift changes and amino acid specific chemical shift mapping of protein–protein interactions. J Biomol NMR 39(4):275–289

    Article  CAS  Google Scholar 

  78. ten Brink T, Aguirre C, Exner TE et al (2015) Performance of protein-ligand docking with simulated chemical shift perturbations. J Chem Inf Model 55(2):275–283

    Article  CAS  Google Scholar 

  79. Boeckler FM, Joerger AC, Jaggi G et al (2008) Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA 105(30):10360–10365

    Article  CAS  Google Scholar 

  80. Wilcken R, Liu X, Zimmermann MO et al (2012) Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J Am Chem Soc 134(15):6810–6818

    Article  CAS  Google Scholar 

  81. Balaram P, Bothner-By AA, Breslow E (1973) Nuclear magnetic resonance studies of the interaction of peptides and hormones with bovine neurophysin. Biochemistry 12(23):4695–4704

    Article  CAS  Google Scholar 

  82. Ni F (1994) Recent developments in transferred NOE methods. Prog Nucl Magn Reson Spectrosc 26:517–606

    Article  CAS  Google Scholar 

  83. Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123(25):6108–6117

    Article  CAS  Google Scholar 

  84. Li D, DeRose EF, London RE (1999) The inter-ligand overhauser effect: a powerful new NMR approach for mapping structural relationships of macromolecular ligands. J Biomol NMR 15(1):71–76

    Article  CAS  Google Scholar 

  85. London RE (1999) Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands. J Magn Reson 141(2):301–311

    Article  CAS  Google Scholar 

  86. Orts J, Tuma J, Reese M et al (2008) Crystallography-independent determination of ligand binding modes. Angew Chem Int Ed Engl 47(40):7736–7740

    Article  CAS  Google Scholar 

  87. Reese M, Sánchez-Pedregal VM, Kubicek K et al (2007) Structural basis of the activity of the microtubule-stabilizing agent epothilone a studied by NMR spectroscopy in solution. Angew Chem Int Ed Engl 46(11):1864–1868

    Article  CAS  Google Scholar 

  88. Sánchez-Pedregal VM, Reese M, Meiler J et al (2005) The INPHARMA method: protein-mediated interligand NOEs for pharmacophore mapping. Angew Chem Int Ed Engl 44(27):4172–4175

    Article  CAS  Google Scholar 

  89. Chen A, Shapiro MJ (1998) NOE Pumping: a Novel NMR technique for identification of compounds with binding affinity to macromolecules. J Am Chem Soc 120(39):10258–10259

    Article  CAS  Google Scholar 

  90. Chen A, Shapiro MJ (2000) NOE pumping. 2. A high-throughput method to determine compounds with binding affinity to macromolecules by NMR. J Am Chem Soc 122(2):414–415

    Article  CAS  Google Scholar 

  91. Dalvit C, Fogliatto G, Stewart A et al (2001) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR 21(4):349–359

    Article  CAS  Google Scholar 

  92. Dalvit C, Pevarello P, Tatò M et al (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18(1):65–68

    Article  CAS  Google Scholar 

  93. Vanwetswinkel S, Heetebrij RJ, van Duynhoven J et al (2005) TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Chem Biol 12(2):207–216

    Article  CAS  Google Scholar 

  94. Jahnke W (2002) Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. ChemBioChem 3(2–3):167–173

    Article  CAS  Google Scholar 

  95. Jahnke W, Rüdisser S, Zurini M (2001) Spin label enhanced NMR screening. J Am Chem Soc 123(13):3149–3150

    Article  CAS  Google Scholar 

  96. Bishri Al, Hassan M, El Deeb S, AlGarabli N et al (2014) Recent advances in affinity capillary electrophoresis for binding studies. Bioanalysis 6(24):3369–3392

    Article  CAS  Google Scholar 

  97. Deeb SE, Wätzig H, El-Hady DA (2013) Capillary electrophoresis to investigate biopharmaceuticals and pharmaceutically-relevant binding properties. TrAC Trends Anal Chem 48:112–131

    Article  CAS  Google Scholar 

  98. Deeb SE, Wätzig H, El-Hady DA et al (2014) Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis. Electrophoresis 35(1):170–189

    Article  CAS  Google Scholar 

  99. Albishri HM, El Deeb S, Al Garabli N, Al Astal R et al (2014) Recent advances in affinity capillary electrophoresis for binding studies. Bioanalysis 6(24):3369–3392

  100. Chu YH, Cheng CC (1998) Affinity capillary electrophoresis in biomolecular recognition. Cell Mol Life Sci 54(7):663–683

    Article  CAS  Google Scholar 

  101. Redweik S, Cianciulli C, Hara M et al (2013) Precise, fast and flexible determination of protein interactions by affinity capillary electrophoresis. Part 2: cations. Electrophoresis 34(12):1812–1819

    Article  CAS  Google Scholar 

  102. Redweik S, Xu Y, Wätzig H (2012) Precise, fast, and flexible determination of protein interactions by affinity capillary electrophoresis: part 1: performance. Electrophoresis 33(22):3316–3322

    Article  CAS  Google Scholar 

  103. Alhazmi HA, El Deeb S, Nachbar M et al Optimization of Affinity Capillary Electrophoresis for Routine Investigations of Protein-Metal Ion Interactions (submitted)

  104. Alhazmi HA, Nachbar M, Albishri HM et al (2015) A comprehensive platform to investigate protein–metal ion interactions by affinity capillary electrophoresis. J Pharm Biomed Anal 107C:311–317

    Article  CAS  Google Scholar 

  105. El-Hady DA, Albishri HM (2012) Hyphenated affinity capillary electrophoresis with a high-sensitivity cell for the simultaneous binding study of retinol and retinoic acid in nanomolars with serum albumins. J Chromatogr B Anal Technol Biomed Life Sci 911:180–185

    Article  CAS  Google Scholar 

  106. Mozafari Torshizi M (in preparation)

  107. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161(6):1219–1237

    Article  CAS  Google Scholar 

  108. Mironov GG, Logie J, Okhonin V et al (2012) Comparative study of three methods for affinity measurements: capillary electrophoresis coupled with UV detection and mass spectrometry, and direct infusion mass spectrometry. J Am Soc Mass Spectrom 23(7):1232–1240

    Article  CAS  Google Scholar 

  109. Zhang M, Gumerov DR, Kaltashov IA et al (2004) Indirect detection of protein–metal binding: interaction of serum transferrin with In3+ and Bi3+. J Am Soc Mass Spectrom 15(11):1658–1664

    Article  CAS  Google Scholar 

  110. Nachbar M, Mozafari M, Alhazmi HA, Preu L, Deeb SE, Redweik S, Lehmann WD, Wätzig H (in preparation) Ca2+-complex stability of the GAPAGPLIVPY peptide in gas and aqueous phase, invested by mass spectrometry and affinity capillary electrophoresis

  111. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci USA 103(52):19678–19682

    Article  CAS  Google Scholar 

  112. Mao Y, Yu L, Yang R et al (2015) A novel method for the study of molecular interaction by using microscale thermophoresis. Talanta 132:894–901

    Article  CAS  Google Scholar 

  113. Lippok S, Seidel SusanneAI, Duhr S et al (2012) Direct detection of antibody concentration and affinity in human serum using microscale thermophoresis. Anal Chem 84(8):3523–3530

    Article  CAS  Google Scholar 

  114. Seidel SusanneAI, Dijkman PM, Lea WA et al (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59(3):301–315

    Article  CAS  Google Scholar 

  115. Seidel SusanneAI, Wienken CJ, Geissler S et al (2012) Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. Angew Chem Int Ed Engl 51(42):10656–10659

    Article  CAS  Google Scholar 

  116. Kim IH, Lee MN, Ryu SH et al (2011) Nanoscale mapping and affinity constant measurement of signal-transducing proteins by atomic force microscopy. Anal Chem 83(5):1500–1503

    Article  CAS  Google Scholar 

  117. Davis BH, Wood B, Oldaker T et al (2013) Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part I—rationale and aims. Cytom B Clin Cytom 84(5):282–285

    Article  CAS  Google Scholar 

  118. Davis BH, Dasgupta A, Kussick S et al (2013) Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part II—preanalytical issues. Cytom B Clin Cytom 84(5):286–290

    Article  CAS  Google Scholar 

  119. Duggan R (2012) Do’s and don’ts of flow cytometry. Lab Times 6:50–51

    Google Scholar 

  120. Wood B, Jevremovic D, Béné MC et al (2013) Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part V—assay performance criteria. Cytom B Clin Cytom 84(5):315–323

    Article  CAS  Google Scholar 

  121. Dudal S, Baltrukonis D, Crisino R et al (2014) Assay formats: recommendation for best practices and harmonization from the global bioanalysis consortium harmonization team. AAPS J 16(2):194–205

    Article  CAS  Google Scholar 

  122. Tanqri S, Vall H, Kaplan D et al (2013) Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part III—analytical issues. Cytom B Clin Cytom 84(5):291–308

    Article  Google Scholar 

  123. Janssen H, Benanou D, David F (2014) Three wizards of sample preparation. Anal Sci 714:20–26

    Google Scholar 

  124. Box GeorgeEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery. Wiley series in probability and statistics, 2nd edn. Wiley, Hoboken

    Google Scholar 

  125. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740

    Article  CAS  Google Scholar 

  126. Meyer C, Seiler P, Bies C et al (2012) Minimum required signal-to-noise ratio for optimal precision in HPLC and CE. Electrophoresis 33(11):1509–1516

    Article  CAS  Google Scholar 

  127. Schepers U, Ermer J, Preu L et al (2004) Wide concentration range investigation of recovery, precision and error structure in liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 810(1):111–118

    Article  CAS  Google Scholar 

  128. Ermer J, Nethercote P (2014) Method validation in pharmaceutical analysis: a guide to best practice, second, completely revised and updated edn, Wiley VCh Verlag. doi:10.1002/9783527672202.ch1

  129. Kaminski L (2011) Aspekte des wirtschaftlichen und effizienten Einsatzes der Hochleistungsflüssigkeitschromatographie. Dissertation, TU Braunschweig

  130. Bühler W, Farmani M, Tegtmeier M, Wätzig H (2012) Statistische Prozesslenkung (SPC) Vom “Quality by Testing” zur “Real Time Release” in univariaten Ansatz. PZ Prisma 19(1):57–60

    Google Scholar 

  131. Dietrich E, Conrad S (2008) Anwendung statistischer Qualitätsmethoden, 3. Aufl. REFA-Fachbuchreihe Unternehmensentwicklung. Hanser, München

  132. Montgomery DC (2013) Introduction to statistical quality control, 7th edn. Wiley, Hoboken

    Google Scholar 

  133. Schröder S, Brandmüller A, Deng X et al (2009) Improving precision in gel electrophoresis by stepwisely decreasing variance components. J Pharm Biomed Anal 50(3):320–327

    Article  CAS  Google Scholar 

  134. Box H, Atkinson AC, Donev AN (1992) Optimum experimental design. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the funding of King AbdulAziz University, Jeddah, Saudi Arabia, provided by Vice President Prof. Dr. A. O. AlYoubi. Furthermore, we are grateful to Dr. Christian Kramer for critically reading and improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Wätzig.

Additional information

Hermann Wätzig and Imke Oltmann-Norden have equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wätzig, H., Oltmann-Norden, I., Steinicke, F. et al. Data quality in drug discovery: the role of analytical performance in ligand binding assays. J Comput Aided Mol Des 29, 847–865 (2015). https://doi.org/10.1007/s10822-015-9851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9851-6

Keywords

Navigation