Pharmacophore-driven identification of PPARγ agonists from natural sources | Journal of Computer-Aided Molecular Design Skip to main content

Advertisement

Log in

Pharmacophore-driven identification of PPARγ agonists from natural sources

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk medicine. From the resulting hits, we selected methyl oleanonate, a compound found, among others, in Pistacia lentiscus var. Chia oleoresin (Chios mastic gum). The acid of methyl oleanonate, oleanonic acid, was identified as a PPARγ agonist through bioassay-guided chromatographic fractionations of Chios mastic gum fractions, whereas some other sub-fractions exhibited also biological activity towards PPARγ. The results from the present work are two-fold: on the one hand we demonstrate that the pharmacophore model we developed is able to select novel ligand scaffolds that act as PPARγ agonists; while at the same time it manifests that natural products are highly relevant for use in virtual screening-based drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tobin JF, Freedman LP (2006) Nuclear receptors as drug targets in metabolic diseases: new approaches to therapy. Trends Endocrinol Metab 17(7):284–290

    Article  CAS  Google Scholar 

  2. Chang F, Jaber LA, Berlie HD, O’Connell MB (2007) Evolution of peroxisome proliferator-activated receptor agonists. Ann Pharmacother 41(6):973–983

    Article  CAS  Google Scholar 

  3. Wang Y (2010) Ppars: diverse regulators in energy metabolism and metabolic diseases. Cell Res 20(2):124–137

    Article  CAS  Google Scholar 

  4. Cheatham W (2010) Peroxisome proliferator-activated receptor translational research and clinical experience. Am J Clin Nutr 91(1):262S–266S

    Article  CAS  Google Scholar 

  5. Willson TM, Lambert MH, Kliewer SA (2001) Peroxisome proliferator-activated receptor γ and metabolic disease. Annu Rev Biochem 70:341–367

    Article  CAS  Google Scholar 

  6. Semple RK, Chatterjee VKK, O’Rahilly S (2006) PPARγ and human metabolic disease. J Clin Invest 116(3):581–589

    Article  CAS  Google Scholar 

  7. Higgins LS, Mantzoros CS (2008) The development of INT131 as a selective PPARγ modulator: approach to a safer insulin sensitizer. PPAR Res. doi:10.1155/2008/936906

  8. Elte JWF, Blicklé JF (2007) Thiazolidinediones for the treatment of type 2 diabetes. Eur J Intern Med 18:18–25

    Article  CAS  Google Scholar 

  9. Guan Y, Hao C, Cha DR, Rao R, Lu W, Kohan DE, Magnuson MA, Redha R, Zhang Y, Breyer MD (2005) Thiazolidinediones expand body fluid volume through PPARγ stimulation of enac-mediated renal salt absorption. Nat Med 11:861–866

    Article  CAS  Google Scholar 

  10. Pan HJ, Lin Y, Chen YE, Vance DE, Leiter EH (2006) Adverse hepatic and cardiac responses to rosiglitazone in a new mouse model of type 2 diabetes: relation to dysregulated phosphatidylcholine metabolism. Vasc Pharmacol 45:65–71

    Article  CAS  Google Scholar 

  11. Wellman M (ed) (1958) Dioscurides P. In de materia medica. Berloni Apud Weidmannos, Berlin

    Google Scholar 

  12. Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer AJ, Chatterjee VK, O’Rahilly S (1999) Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402:880–883

    CAS  Google Scholar 

  13. Berger J, Petro AE, Macnaul KL, Kelly LJ, Zhang BB, Richards K, Elbrecht A, Johnson BA, Zhou G, Doebber TW, Biswas C, Parikh M, Sharma N, Tanen MR, Thompson GM, Ventre J, Adams AD, Mosley R, Surwit RS, Moller DE (2003) Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol Endocrinol 17(4):662–676

    Article  CAS  Google Scholar 

  14. Lu I-L, Huang C-F, Peng Y-H, Lin Y-T, Hsieh H-P, Chen C-T, Lien T-W, Lee H-J, Mahindroo N, Prakash E, Yueh A, Chen H-Y, Goparaju CMV, Chen X, Liao C-C, Chao Y-S, Hsu JT-A, Wu S-Y (2006) Structure-based drug design of a novel family of pparγ partial agonists: Virtual screening, x-ray crystallography, and in vitro/in vivo biological activities. J Med Chem 49:2703–2712

    Article  CAS  Google Scholar 

  15. Pochetti G, Godio C, Mitro N, Caruso D, Galmozzi A, Scurati S, Loiodice F, Fracchiolla G, Tortorella P, Laghezza A, Lavecchia A, Novellino E, Mazza F, Crestan M (2007) Insights into the mechanism of partial agonism. J Biol Chem 282(23):17314–17324

    Article  CAS  Google Scholar 

  16. Towfighi A, Ovbiagele B (2008) Partial peroxisome proliferator-activated receptor agonist angiotensin receptor blockers. Potential multipronged strategy in stroke prevention. Cerebrovasc Dis 26(2):106–112

    Article  CAS  Google Scholar 

  17. Markt P, Schuster D, Kirchmair J, Laggner C, Langer T (2007) Pharmacophore modeling and parallel screening for PPAR ligands. J Comput Aided Mol Des 21:575–590

    Article  CAS  Google Scholar 

  18. Markt P, Petersen RK, Flindt EN, Kristiansen K, Kirchmair J, Spitzer G, Distinto S, Schuster D, Wolber G, Laggner C, Langer T (2008) Discovery of novel ppar ligands by a virtual screening approach based on pharmacophore modeling, 3d shape, and electrostatic similarity screening. J Med Chem 51:6303–6317

    Article  CAS  Google Scholar 

  19. Tanrikulu Y, Rau O, Schwarz O, Proschak E, Siems K, Müller-Kuhrt L, Schubert-Zsilavecz M, Schneider G (2009) Structure-based pharmacophore screening for natural-product-derived pparg agonists. Chem Biol Chem 10:75–78

    CAS  Google Scholar 

  20. Huang TH, Kota BP, Razmovski V, Roufogalis BD (2005) Herbal or natural medicines as modulators of peroxisome proliferator-activated receptors and related nuclear receptors for therapy of metabolic syndrome. Basic Clin Pharmacol Toxicol 96:3–14

    Article  CAS  Google Scholar 

  21. Christensen KB, Minet A, Svenstrup H, Grevsen K, Zhang H, Schrader E, Rimbach G, Wein S, Wolffram S, Kristiansen K, Christensen LP (2009) Identification of plant extracts with potential antidiabetic properties: Effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin- stimulated glucose uptake. Phytother Res 23(9):1316–1325

    Article  CAS  Google Scholar 

  22. Christensen K, Petersen R, Petersen S, Kristiansen K, Christensen L (2009) Activation of PPARgamma by metabolites from the flowers of purple coneflower (Echinacea purpurea). J Nat Prod 22(72):933–937

    Article  Google Scholar 

  23. Christensen K, Petersen R, Kristiansen K, Christensen L (2010) Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) gamma. Phytother Res 24(Suppl 2):S129–S132

    Article  Google Scholar 

  24. Marles RJ, Farnsworth NR (1995) Antidiabetic plants and their active constituents. Phytomedicine 2:137–189

    Google Scholar 

  25. Shen J, Xu X, Cheng F, Liu H, Luo X, Shen J, Chen K, Zhao W, Shen X, Jiang H (2003) Virtual screening of natural products for discovering active compounds and target information. Curr Med Chem 10:2327–2342

    Article  CAS  Google Scholar 

  26. Molecular operating environment, v.2008.10 (2008) Chemical computing group. Montreal, Quebec

    Google Scholar 

  27. Larsen PJ, Lykkegaard K, Larsen LK, Fleckner J, Sauerberg P, Wassermann K, Wulff EM (2008) Dissociation of antihyperglycaemic and adverse effects of partial perioxisome proliferator-activated receptor (PPAR-gamma) agonist balaglitazone. Eur J Pharmacol 596(1–3):173–179

    Article  CAS  Google Scholar 

  28. Kim J, Han DC, Kim JM, Lee SY, Kim SJ, Woo JR, Lee JW, Jung SK, Yoon KS, Cheon HG, Kim SS, Hong SH, Kwon BM (2009) PPAR gamma partial agonist, KR-62776, inhibits adipocyte differentiation via activation of erk. Cell Mol Life Sci 66(10):1766–1781

    Article  CAS  Google Scholar 

  29. Fukuen S, Iwaki M, Yasui A, Makishima M, Matsuda M, Shimomura I (2005) Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity. J Biol Chem 280(25):23653–23659

    Article  CAS  Google Scholar 

  30. Kim KR, Lee JH, Kim SJ, Rhee SD, Jung WH, Yang SD, Kim SS, Ahn JH, Cheon HG (2006) KR-62980: a novel peroxisome proliferator-activated receptor gamma agonist with weak adipogenic effects. Biochem Pharmacol 72(4):446–454

    Article  CAS  Google Scholar 

  31. Reifel-Miller A, Otto K, Hawkins E, Barr R, Bensch WR, Bull C, Dana S, Klausing K, Martin JA, Rafaeloff-Phail R, Rafizadeh-Montrose C, Rhodes G, Robey R, Rojo I, Rungta D, Snyder D, Wilbur K, Zhang T, Zink R, Warshawsky A, Brozinick JT (2005) A peroxisome proliferator-activated receptor alpha/gamma dual agonist with a unique in vitro profile and potent glucose and lipid effects in rodent models of type 2 diabetes and dyslipidemia. Mol Endocrinol 19(6):1593–1605

    Article  CAS  Google Scholar 

  32. Allen T, Zhang F, Moodie SA, Clemens LE, Smith A, Gregoire F, Bell A, Muscat GE, Gustafson TA (2006) Halofenate is a selective peroxisome proliferator-activated receptor gamma modulator with antidiabetic activity. Diabetes 55(9):2523–2533

    Article  CAS  Google Scholar 

  33. Burgermeister E, Schnoebelen A, Flament A, Benz J, Stihle M, Gsell B, Rufer A, Ruf A, Kuhn B, Märki HP, Mizrahi J, Sebokova E, Niesor E, Meyer M (2006) A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol Endocrinol 20(4):809–830

    Article  CAS  Google Scholar 

  34. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of telmisartan as a unique angiotensin ii receptor antagonist with selective ppargamma-modulating activity. Hypertension 43(5):993–1002

    Article  CAS  Google Scholar 

  35. Wang Y, Porter WW, Suh N, Honda T, Gribble GW, Leesnitzer LM, Plunket KD, Mangelsdorf DJ, Blanchard SG, Willson TM, Sporn MB (2000) A synthetic triterpenoid, 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid (CDDO), is a ligand for the peroxisome proliferator-activated receptor gamma. Mol Endocrinol 14(10):1550–1556

    Article  CAS  Google Scholar 

  36. Li Y, Wang Z, Furukawa N, Escaron P, Weiszmann J, Lee G, Lindstrom M, Liu J, Liu X, Xu H, Plotnikova O, Prasad V, Walker N, Learned RM, Chen JL (2008) T2384, a novel antidiabetic agent with unique peroxisome proliferator-activated receptor gamma binding properties. J Biol Chem 283(14):9168–9176

    Article  CAS  Google Scholar 

  37. Schupp M, Lee LD, Frost N, Umbreen S, Schmidt B, Unger T, Kintscher U (2006) Regulation of peroxisome proliferator-activated receptor gamma activity by losartan metabolites. Hypertension 47(3):586–589

    Article  CAS  Google Scholar 

  38. Assimopoulou AN, Papageorgiou VP (2005) GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part i. Pistacia lentiscus var. Chia. Biomed Chromatogr 19:285–311

    Article  CAS  Google Scholar 

  39. Assimopoulou AN, Ganzera M, Stuppner H, Papageorgiou VP Determination of penta- and tetra- cyclic triterpenes in Pistacia lentiscus resin. In: 57th international congress and annual meeting of the Society for Medicinal Plant and Natural Product Research, Geneva, 2009. Planta Medica 75(9)

  40. Artis DR, Lin JJ, Zhang C, Wang W, Mehra U, Perreault M, Erbe D, Krupka HI, England BP, Arnold J, Plotnikov AN, Marimuthu A, Nguyen H, Will S, Signaevsky M, Kral J, Cantwell J, Settachatgull C, Yan DS, Fong D, Oh A, Shi S, Womack P, Powell B, Habets G, West BL, Zhang KYJ, Milburna MV, Vlasuk GP, Hirth KP, Nolop K, Bollag G, Ibrahim PN, Tobin JF (2009) Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. PNAS 106:262–267

    Article  CAS  Google Scholar 

  41. Papageorgiou VP, Bakola-Christianopoulou MN, Apazidou KK, Psarros EE (1997) Gas chromatographic-mass spectroscopic analysis of the acidic triterpenic fraction of mastic gum. J Chromatogr A 769:263–273

    Article  CAS  Google Scholar 

  42. http://www.shape.gr/news/153/ARTICLE/1980/2009-06-22.html. Accessed May 04, 2010

  43. Mahindroo N, Wang CC, Liao CC, Huang CF, Lu IL, Lien TW, Peng YH, Huang WJ, Lin YT, Hsu MC, Lin CH, Hsu JT, Chen X, Lyu PC, Chao YS, Wu SY, Hsieh HP (2006) PDB id: 2f4b indol-1-yl acetic acids as peroxisome proliferator-activated receptor agonists: design, synthesis, structural biology, and molecular docking studies. J Med Chem 49:1212–1216

    Article  CAS  Google Scholar 

  44. Duke J (1983) Medicinal plants of the bible, vol 90. Trado-medic books, New York

    Google Scholar 

  45. Magiatis P, Melliou E, Skaltsounis AL, Chinou IB, Mitaku S (1999) Chemical composition and antimicrobial activity of the essential oil of Pistacia lentiscus var. Chia. Planta Med 65:749–752

    Article  CAS  Google Scholar 

  46. Hartwell J (1967) Plants used against cancer. Lloydia 30(4):395–397

    Google Scholar 

  47. Doi K, Wei M, Kitano M, Uematsu N, Inoue M, Wanibuchi H (2009) Enhancement of preneoplastic lesion yield by chios mastic gum in a rat liver medium-term carcinogenesis bioassay. Toxicol Appl Pharmacol 234(1):135–142

    Article  CAS  Google Scholar 

  48. Al-Said M, Ageel AM, Parmar NS, Tariq M (1986) Evaluation of mastic obtained from Pistacia lentiscus crude drug for gastric and duodenal anti-ulcer activity. J Ethnopharmacol 15:271–278

    Article  CAS  Google Scholar 

  49. Dabos KJ, Sfika E, Vlatta LJ, Frantzi D, Amygdalos GI, Giannikopoulos G (2010) Is chios mastic gum effective in the treatment of functional dyspepsia? A prospective randomised double-blind placebo controlled trial. J Ethnopharmacol 127(2):205–209

    Article  Google Scholar 

  50. Triantafyllou A, Chaviaras N, Sergentanis TN, Protopapa E, Tsaknis J (2007) Chios mastic gum modulates serum biochemical parameters in a human population. J Ethnopharmacol 111(1):43–49

    Article  Google Scholar 

  51. Andrikopoulos NK, Kaliora AC, Assimopoulou AN, Papapeorgiou VP (2003) Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation. Phytother Res 17:501–507

    Article  CAS  Google Scholar 

  52. Assimopoulou AN, Zlatanos SN, Papageorgiou VP (2005) Antioxidant activity of natural resins and bioactive triterpenes in oil substrates. Food Chem 92:721–727

    Article  CAS  Google Scholar 

  53. Sewram V, Raynor W, Mulholland DA, Raidoo DM (2000) The uterotonic activity of compounds isolated from the supercritical fluid extract of Ekebergia capensis. Pharm Biomed Anal 24(1):133–145

    Article  CAS  Google Scholar 

  54. Sewram V, Raynor MW, Raidoo DM, Mulholland DA (1998) Coupling safe to uterotonic bioassay: an on-line approach to analysing medicinal plants. J Pharm Biomed Anal 18(3):305–318

    Article  CAS  Google Scholar 

  55. Chiang YM, Chang JY, Kuo CC, Chang CY, Kuo YH (2005) Cytotoxic triterpenes from the aerial roots of Ficus microspora. Phytochemistry 66:495–501

    Article  CAS  Google Scholar 

  56. Rui L, Qian-Qun G, Cheng-Bin C, Bing C, Hong-Bing L, Lei W, Hua-Shi G (2005) 12α, 13-dihydroxyolean-3-oxo-28-oic acid, a new triterpene, and the known oleanonic acid as a new cell cycle inhibitor from Schefflera venulosa. Chin J Chem 23:242–244

    Article  Google Scholar 

  57. Nguyen AT, Fontaine J, Malonne H, Claeys M, Luhmer M, Duez P (2005) A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry 66(19):1186–1191

    Article  CAS  Google Scholar 

  58. Paraschos S, Magiatis P, Mitakou S, Petraki K, Kalliaropoulos A, Maragkoudakis P, Mentis A, Sgouras D, Skaltsounis AL (2007) In vitro and in vivo activities of chios mastic gum extracts and constituents against Helicobacter pylori. Antimicrob Agents Chemother 51(2):551–559

    Article  CAS  Google Scholar 

  59. Bona SG, Bono L, Daghetta L, Marone P (2001) Bactericidal activity of Pistacia lentiscus gum mastic against Helicobacter pylori. J Chemother 13(6):611–614

    Google Scholar 

  60. Giner-Larza EM, Mañez S, Recio MC, Giner RM, Prieto JM, Cerdá-Nicolás M, Ríos JL (2001) Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur J Pharmacol 428:137–143

    Article  CAS  Google Scholar 

  61. Nahrstedt A, Butterweck V (2010) Lessons learned from herbal medicinal products: the example of St. John’s wort. J Nat Prod [Epub ahead of print]

Download references

Acknowledgments

IK acknowledges financial support from the Danish Research Council for Technology and Production Sciences (Grant 274-06-0301). This work was further supported by the Danish Council for Strategic Research (Grant No. 2101-01-0065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Kouskoumvekaki.

Additional information

Rasmus K. Petersen and Kathrine B. Christensen have equally contributed to this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, R.K., Christensen, K.B., Assimopoulou, A.N. et al. Pharmacophore-driven identification of PPARγ agonists from natural sources. J Comput Aided Mol Des 25, 107–116 (2011). https://doi.org/10.1007/s10822-010-9398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9398-5

Keywords

Navigation