Abstract
In this article, we show that the extension of the resolution proof system to deduction modulo is equivalent to the cut-free fragment of the sequent calculus modulo. The result is obtained through a syntactic translation, without using any cut-elimination procedure. Additionally, we show Skolem theorem and inversion/focusing results. Thanks to the expressiveness of deduction modulo, all these results also apply to the cases of higher-order resolution, Peano’s arithmetic and Gentzen’s LK.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)
Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2(3), 297–347 (1992)
Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 4790, pp. 151–165. Springer, New York (2007)
Bonichon, R., Hermant, O.: A semantic completeness proof for TaMeD. In: Hermann, M., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 4246, pp. 167–181. Springer, New York (2006)
Bonichon, R., Hermant, O.: On constructive cut admissibility in deduction modulo. In: Altenkirch, T., McBride, C. (eds.) TYPES for Proofs and Programs. Lecture Notes in Computer Science, vol. 4502, pp. 33–47. Springer, New York (2007)
Burel, G., Kirchner, C.: Cut elimination in deduction modulo by abstract completion. In: Artëmov, S.N., Nerode, A. (eds.) LFCS. Lecture Notes in Computer Science, vol. 4514, pp. 115–131. Springer, New York (2007)
Bonichon, R.: TaMeD: a tableau method for deduction modulo. In: Automated Reasoning: Second International Joint Conference, IJCAR 2004, 4–8 July 2004
Burel, G.: A first-order representation of pure type systems using superdeduction. In: LICS, pp. 253–263. IEEE Computer Society, Los Alamitos (2008)
Dowek, G., Hardin, T., Kirchner, C.: Hol-lambda-sigma: an intentional first-order expression of higher-order logic. Math. Struct. Comput. Sci. 11, 1–25 (2001)
Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reason. 31, 33–72 (2003)
Dowek, G., Miquel, A.: Cut Elimination for Zermelo’s Set Theory. Manuscript (2007)
de Nivelle, H.: Ordering refinments of resolution. Ph.D. thesis, Technische Universiteit Delft (1995)
de Nivelle, H.: Implementing the Clausal Normal Form Transformation with Proof Generation. University of Liverpool, Liverpool (2003)
Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 179–272. Elsevier and MIT, New York (2001)
Dowek, G., Werner, B.: Proof normalization modulo. J. Symb. Log. 68(4), 1289–1316 (2003)
Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.) RTA. Lecture Notes in Computer Science, vol. 3467, pp. 423–437. Springer, New York (2005)
Dowek, G., Werner, B.: A Constructive Proof of Skolem Theorem for Constructive Logic. Manuscript (2005)
Fitting, M.: First Order Logic and Automated Theorem Proving, 2nd edn. Springer, New York (1996)
Gentzen, G.: Untersuchungen über das logische Schliessen. Math. Z. 39, 176–210, 405–431 (1934)
Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987)
Herbelin, H.: Séquents qu’on calcule. Ph.D. thesis, Université Paris VII, Janvier (1995)
Hermant, O.: Méthodes sémantiques en déduction modulo. Ph.D. thesis, Université Paris 7 – Denis Diderot (2005)
Hermant, O.: Semantic cut elimination in the intuitionistic sequent calculus. In: Urzyczyn, P. (ed.) Typed Lambda-Calculi and Applications. LNCS, vol. 3461, pp. 221–233. Nara, Japan. Springer, New York (2005)
Hermant, O.: Skolemization in various intuitionistic logics. Arch. Math. Log. (2009, in press)
Howe, J.M.: Proof search issues in some non-classical logics. Ph.D. thesis, University of St Andrews (1998). Available as University of St Andrews Research Report CS/99/1
Kleene, S.C.: Permutability of inferences in Gentzen’s calculi LK and LJ. Two papers on the predicate calculus. Mem. Am. Math. Soc. 10, 1–26 (1952)
Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL. Lecture Notes in Computer Science, vol. 4646, pp. 451–465. Springer, New York (2007)
Maehara, S.: The predicate calculus with ε symbol. J. Math. Soc. Jpn. 7(4), 323–344 (1955)
Maslov, S.Ju.: An inverse method of establishing deducibilities in the classical predicate calculus. Dokl. Akad. Nauk SSSR 159, 17–20 (1964). Reprinted in Siekmann, Wrightson: Automation of reasoning 1: Classical papers on computational logic 1957–1966 (1983)
Mints, G.E.: Skolem’s method of elimination of positive quantifiers in sequential calculi. Sov. Math. Dokl. 7, 861–864 (1966)
Mints, G.: Gentzen-type systems and resolution rules, part I: propositional logic. In: Martin-Löf, P., Mints, G. (eds.) Conference on Computer Logic. Lecture Notes in Computer Science, vol. 417, pp. 198–231. Springer, New York (1988)
Mints, G.: Gentzen-type systems and resolution rule, part II: predicate logic. In: Oikkonen, J., Väänänen, J. (eds.) Proc. of ASL Summer Meeting, Logic Colloquium ’90, Helsinki, Finland, 15–22 July 1990. Lecture Notes in Logic, vol. 2, pp. 163–190. Springer, New York (1993)
Nerode, A., Shore, R.A.: Logic for Applications. Springer, New York (1993)
Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 335–367. Elsevier and MIT, New York (2001)
Pfenning, F.: Automated Theorem Proving. Lecture Notes (2004)
Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)
Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT, New York (2001)
Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Commun. 15(2), 91–110 (2002)
Skolem, T.: Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Verënderlichen mit unendlichem Ausdehnungsbereich. In: Videnskapsselskapets skrifter, I. Matematisk-naturvidenskabelig klasse, vol. 6 (1923) English translation by van Heijenoort in From Frege to Gödel
Schwichtenberg, H., Troelstra, A.S.: Basic Proof Theory. Cambridge University Press, Cambridge (1996)
Stuber, J.: A model-based completeness proof of extended narrowing and resolution. In: First International Joint Conference on Automated Reasoning (IJCAR-2001). LNCS, vol. 2083, pp. 195–210. Springer, New York (2001)
Szabo, M.E. (ed.): Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundation of Mathematics. North Holland, Amsterdam (1969)
Takeuti, G.: Proof Theory, 2nd edn. North Holland, Amsterdam (1987)
Tammet, T.: Resolution, inverse method and the sequent calculus. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) Kurt Gödel Colloquium. Lecture Notes in Computer Science, vol. 1289, pp. 65–83. Springer, New York (1997)
Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction. North-Holland, Amsterdam (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hermant, O. Resolution is Cut-Free. J Autom Reasoning 44, 245–276 (2010). https://doi.org/10.1007/s10817-009-9153-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10817-009-9153-6