An adaptive genetic algorithm for demand-driven and resource-constrained project scheduling in aircraft assembly | Information Technology and Management Skip to main content

Advertisement

Log in

An adaptive genetic algorithm for demand-driven and resource-constrained project scheduling in aircraft assembly

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

Scheduling of aircraft assembling activities is proven as a non-deterministic polynomial-time hard problem; which is also known as a typical resource-constrained project scheduling problem (RCPSP). Not saying the scheduling of the complex assemblies of an aircraft, even for a simple product requiring a limited number of assembling operations, it is difficult or even infeasible to obtain the best solution for its RCPSP. To obtain a high quality solution in a short time frame, resource constraints are treated as the objective function of an RCPSP, and an adaptive genetic algorithm (GA) is proposed to solve demand-driven scheduling problems of aircraft assembly. In contrast to other GA-based heuristic algorithms, the proposed algorithm is innovative in sense that: (1) it executes a procedure with two crossovers and three mutations; (2) its fitness function is demand-driven. In the formulation of RCPSP for aircraft assembly, the optimizing criteria are the utilizations of working time, space, and operators. To validate the effectiveness of the proposed algorithm, two encoding approaches have been tested with the real data of demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Afruzi EN, Roghanian E, Najafi AA, Mazinani M (2013) A multi-mode resource-constrained discrete time–cost tradeoff problem solving using an adjusted fuzzy dominance genetic algorithm. Sci Iran 20(3):931–944

    Google Scholar 

  2. Afshar-Nadjafi B, Rahimi A, Karimi H (2013) A genetic algorithm for mode identity and the resource constrained project scheduling problem. Sci Iran 20(3):824–831

    Google Scholar 

  3. Agarwal A, Colak S, Erenguc S (2011) A neurogenetic approach for the resource-constrained project scheduling problem. Comput Oper Res 38(1):44–50

    Article  Google Scholar 

  4. Agpak K (2010) An approach to find task sequence for re-balancing of assembly lines. Assem Autom 30(4):378–387

    Article  Google Scholar 

  5. Artigues C (2008) The resource-constrained project scheduling problem. In: Artigues C, Demassey S, Neron E (eds) Resource-constrained project scheduling: models, algorithms, extensions and application. ISTE Ltd and Wiley, London and Hoboken, pp 21–36

    Chapter  Google Scholar 

  6. Bakshi T, Sarkar B, Sanyal SK (2012) An evolutionary algorithm for multi-criteria resource constrained project scheduling problem based on PSO. Procedia Technol 6:231–238

    Article  Google Scholar 

  7. Baradaran S, Fatemi Ghomi SMT, Mobini M, Hashemin SS (2010) A hybrid scatter search approach for resource-constrained project scheduling problem in PERT-type networks. Adv Eng Softw 41(7–8):966–975

    Article  Google Scholar 

  8. Baradaran S, Fatemi Ghomi SMT, Ranjbar M, Hashemin SS (2012) Multi-mode renewable resource-constrained allocation in PERT networks. Appl Soft Comput 12(1):82–90

    Article  Google Scholar 

  9. Bautista J, Pereira J (2007) Ant algorithms for a time and space constrained assembly line balancing problem. Eur J Oper Res 177(3):2016–2032

    Article  Google Scholar 

  10. Bi ZM, Wang LH, Wu C, Yang G, Zhang D (2013) Multidisciplinary design optimization for engineering. Math Probl Eng 1–2 (Article ID 351097)

  11. Bi ZM, Zhang WJ (2000) Concurrent optimal design of modular robotic configuration. J Robot Syst 18(2):77–87

    Article  Google Scholar 

  12. Bi ZM (2010) Computer integrated reconfigurable experimental platform from ergonomic study of vehicle body design. Int J Comput Integr Manuf 23(11):968–978

    Article  Google Scholar 

  13. Bi ZM, Lang SYT, Orban P, Verner M (2007) An integrated design toolbox for tripod-based parallel kinematic machines. ASME J Mech Des 129(8):799–807

    Article  Google Scholar 

  14. Chaudhry S, Varano M, Xu L (2000) Systems research, genetic algorithms, and information systems. Syst Res Behav Sci 17(2):149–162

    Article  Google Scholar 

  15. Chen PH, Weng HJ (2009) A two-phase GA model for resource-constrained project scheduling. Autom Constr 18(4):485–498

    Article  Google Scholar 

  16. Chen RM (2011) Particle swarm optimization with justification and designed mechanisms for resource-constrained project scheduling problem. Expert Syst Appl 38(6):7102–7111

    Article  Google Scholar 

  17. Chen Z, Xu L (2001) An object-oriented Intelligent CAD System for ceramic kiln. Knowl-Based Syst 14(5–6):263–270

    Article  Google Scholar 

  18. Duan L, Xu L (2012) Business intelligence for enterprise systems: a survey. IEEE Trans Ind Inf 8(3):679–687

    Article  Google Scholar 

  19. Elloumi S, Fortemps P (2010) A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem. Eur J Oper Res 205(1):31–41

    Article  Google Scholar 

  20. Feng S, Xu L, Tang C, Yang S (2003) An intelligent agent with layered architecture for operating systems resource management. Expert Syst 20(4):171–178

    Article  Google Scholar 

  21. Ghoddousi P, Eshtehardian E, Jooybanpour S, Javanmardi A (2013) Multi-mode resource-constrained discrete time–cost-resource optimization in project scheduling using non-dominated sorting genetic algorithm. Autom Constr 30:216–227

    Article  Google Scholar 

  22. Gonçalves JF, Mendes JJM, Resende MGC (2005) A hybrid genetic algorithm for the job shop scheduling problem. Eur J Oper Res 167(1):77–95

    Article  Google Scholar 

  23. Hurink JL, Kok AL, Paulus JJ, Schutten JMJ (2011) Time-constrained project scheduling with adjacent resources. Comput Oper Res 38(1):310–319

    Article  Google Scholar 

  24. Jarboui B, Damak N, Siarry P, Rebai A (2008) A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Appl Math Comput 195(1):299–308

    Google Scholar 

  25. Jiang Y, Xu L, Wang H, Wang H (2009) Influencing factors for predicting financial performance based on genetic algorithms. Syst Res Behav Sci 26(6):661–673

    Article  Google Scholar 

  26. Kim JL (2007) Permutation-based elitist genetic algorithm using serial scheme for large-sized resource-constrained project scheduling. In: Henderson SG et al (eds) Proceedings of the 2007 winter simulation conference, 9–12 Dec 2007, Washington, pp 2112–2118

  27. Kim KW, Gen M, Yamazaki G (2003) Hybrid genetic algorithm with fuzzy logic for resource-constrained project scheduling. Appl Soft Comput 2(3):174–188

    Article  Google Scholar 

  28. Kim KW, Yun YS, Yoon JM, Gen M, Yamazaki G (2005) Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling. Comput Ind 56(2):143–160

    Article  Google Scholar 

  29. Koonce DA, Tsai SC (2000) Using data mining to find patterns in genetic algorithm solutions to a job shop schedule. Comput Ind Eng 38(3):361–374

    Article  Google Scholar 

  30. Li F, Xu L, Jin C, Wang H (2011) Intelligent bionic genetic algorithm (IB-GA) and its convergence. Expert Syst Appl 38(7):8804–8811

    Article  Google Scholar 

  31. Li F, Xu L, Jin C, Wang H (2011) Structure of multi-stage composite genetic algorithm (MSC-GA) and its performance. Expert Syst Appl 38(7):8929–8937

    Article  Google Scholar 

  32. Li J, Wang K, Xu L (2009) Chameleon based on clustering feature tree and its application in customer segmentation. Ann Oper Res 168:225–245

    Article  Google Scholar 

  33. Liberatore MJ, Pollack-Johnson B, Smith CA (2001) Project management in construction: software use and research direction. J Constr Eng Manag 127(2):101–107

    Article  Google Scholar 

  34. Lin DP, Lee CKM, William H (2013) Multi-level genetic algorithm for the resource-constrained re-entrant scheduling problem in the flow shop. Eng Appl Artif Intell 26(4):1282–1290

    Article  Google Scholar 

  35. Liu TK, Chen CH, Chou JH (2010) Optimization of short-haul aircraft schedule recovery problems using a hybrid multiobjective genetic algorithm. Expert Syst Appl 37(3):2307–2315

    Article  Google Scholar 

  36. Lova A, Tormos P, Cervantes M, Barber F (2009) An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. Int J Prod Econ 117(2):302–316

    Article  Google Scholar 

  37. Magalheas-mendes J (2008) Project scheduling under multiple resources constraints using a genetic algorithm. WSEAS Trans Bus Econ 11(5):487–496

    Google Scholar 

  38. Mendes JJM, Gonçalves JF, Resende MGC (2009) A random key based genetic algorithm for the resource constrained project scheduling problem. Comput Oper Res 36(1):92–109

    Article  Google Scholar 

  39. Mobini M, Mobini Z, Rabbani M (2011) An artificial immune algorithm for the project scheduling problem under resource constraints. Appl Soft Comput 11(2):1975–1982

    Article  Google Scholar 

  40. Montoya-Torres JR, Edgar Gutierrez-Franco E, Pirachicán-Mayorga C (2010) Project scheduling with limited resources using a genetic algorithm. Int J Proj Manag 28(6):619–628

    Article  Google Scholar 

  41. Moumene K, Ferland JA (2009) Activity list representation for a generalization of the resource-constrained project scheduling problem. Eur J Oper Res 199(1):46–54

    Article  Google Scholar 

  42. Neumann K, Zimmermann J (2000) Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. Eur J Oper Res 127(2):425–443

    Article  Google Scholar 

  43. Paraskevopoulos DC, Tarantilis CD, Ioannou G (2012) Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm. Expert Syst Appl 39(4):3983–3994

    Article  Google Scholar 

  44. Ponz-Tienda JL, Yepes V, Pellicer E, Moreno-Flores J (2013) The resource leveling problem with multiple resources using an adaptive genetic algorithm. Autom Constr 29(2013):161–172

    Article  Google Scholar 

  45. Ranjbar M, Kianfar F (2007) Solving the discrete time/resource trade-off problem in project scheduling with genetic algorithms. Appl Math Comput 191(2):451–456

    Google Scholar 

  46. Ranjbar M, Kianfar F, Shadrokh S (2008) Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm. Appl Math Comput 196(2):879–888

    Google Scholar 

  47. Ranjbar M, Khalilzadeh M, Kianfar F, Etminani K (2012) An optimal procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem. Comput Ind Eng 62(1):264–270

    Article  Google Scholar 

  48. Shi Z, Huang Y, He Q, Xu L, Liu S, Qin L, Jia Z, Li J, Huang H, Zhao L (2007) MSMiner—a developing platform for OLAP. Decis Support Syst 42(4):2016–2028

    Article  Google Scholar 

  49. Shan SQ, Wang L, Xin TL, Bi ZM (2013) Developing a rapid response production system for aircraft manufacturing. Int J Prod Econ 146(1):37–47

    Article  Google Scholar 

  50. Tapkan P, Ozbakir L, Baykasoglu A (2012) Modeling and solving constrained two-sided assembly line balancing problem via bee algorithms. Appl Soft Comput 12(11):3343–3355

    Article  Google Scholar 

  51. Valls V, Ballestín F, Quintanilla S (2008) A hybrid genetic algorithm for the resource-constrained project scheduling problem. Eur J Oper Res 185(2):495–508

    Article  Google Scholar 

  52. Van Peteghem V, Vanhoucke M (2010) A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Eur J Oper Res 201(2):409–418

    Article  Google Scholar 

  53. Wang C, Xu L, Peng W (2007) Conceptual design of remote monitoring and fault diagnosis systems. Inf Syst 32:996–1004

    Article  Google Scholar 

  54. Wang C, Xu L (2008) Parameter mapping and data transformation for engineering application integration. Inf Syst Front 10(5):589–600

    Article  Google Scholar 

  55. Wang C, Bi Z, Xu L (2014) IoT and cloud computing in automation of assembly modeling systems. IEEE Trans Ind Inf 10(2):1426–1434

    Article  Google Scholar 

  56. Wang L, Xu L, Wang X, You W, Tan W (2009) Knowledge portal construction and resources integration for a large scale hydropower dam. Syst Res Behav Sci 26(3):357–366

    Article  Google Scholar 

  57. Wang L, Fang C (2011) An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Inf Sci 181(20):4804–4822

    Article  Google Scholar 

  58. Wang P, Zhang J, Xu L, Wang H, Feng S, Zhu H (2011) How to measure adaptation complexity in evolvable systems-a new synthetic approach of constructing fitness functions. Expert Syst Appl 38(8):10414–10419

    Article  Google Scholar 

  59. Wikipedia (2014) Schedule. http://en.wikipedia.org/wiki/Schedule

  60. Wong TC, Chan FTS, Chan LY (2009) A resource-constrained assembly job shop scheduling problem with lot streaming technique. Comput Ind Eng 57(3):983–995

    Article  Google Scholar 

  61. Wu SS, Wan HD, Shukla SK, Li BZ (2011) Chaos-based improved immune algorithm (CBIIA) for resource-constrained project scheduling problems. Expert Syst Appl 38(4):3387–3395

    Article  Google Scholar 

  62. Xu L, Li Z, Li S, Tang F (2005) A polychromatic sets approach to the conceptual design of machine tools. Int J Prod Res 43(12):2397–2422

    Article  Google Scholar 

  63. Xu L, Li Z, Li S, Tang F (2007) A decision support system for product design in concurrent engineering. Decis Support Syst 42(4):2029–2042

    Article  Google Scholar 

  64. Xu L, Wang C, Bi Z, Yu J (2012) AutoAssem: an automated assembly planning system for complex products. IEEE Trans Ind Inf 8(3):669–678

    Article  Google Scholar 

  65. Xu L, Wang C, Bi Z, Yu J (2014) Object-oriented templates for automated assembly planning of complex products. IEEE Trans Autom Sci Eng 11(2):492–503

    Article  Google Scholar 

  66. Xu NX, McKee SA, Nozick LK, Ufomata R (2008) Augmenting priority rule heuristics with justification and rollout to solve the resource-constrained project scheduling problem. Comput Oper Res 35(10):3284–3297

    Article  Google Scholar 

  67. Xu W, Xu L, Liu X, Jones J (2008) A new approach to decision-making with key constraint and its application in enterprise information systems. Enterp Inf Syst 2(3):287–308

    Article  Google Scholar 

  68. Yin Y, Xu L, Bi Z, Chen H (2013) A novel human–machine collaborative interface for aero-engine pipe routing. IEEE Trans Ind Inf 9(4):2187–2199

    Article  Google Scholar 

  69. Yu J, Xu L, Bi Z, Wang C (2014) Extended interference matrices for exploded view of assembly planning. IEEE Trans Autom Sci Eng 11(1):279–286

    Article  Google Scholar 

  70. Zhang H, Li XD, Li H, Huang FL (2005) Particle swarm optimization-based schemes for resource-constrained project scheduling. Autom Constr 14(3):393–404

    Article  Google Scholar 

  71. Zhang H, Li H, Tam CM (2006) Particle swarm optimization for resource-constrained project scheduling. Int J Proj Manag 24(1):83–92

    Article  Google Scholar 

  72. Ziarati K, Akbari R, Zeighami V (2011) On the performance of bee algorithms for resource-constrained project scheduling problem. Appl Soft Comput 11(4):3720–3733

    Article  Google Scholar 

  73. Zhu XY, Wilhelm WE (2013) Implementation of a three-stage approach for the dynamic resource-constrained shortest-path sub-problem in branch-and-price. Comput Oper Res 40(1):385–394

    Article  Google Scholar 

Download references

Acknowledgments

This research work would not have been possible without the support of the National Natural Science Foundation of China (71332003, 71471008, 91224007, and 71301011) and Beijing Natural Science Foundation (9142012). This research work has also been supported by the Aircraft Manufacturing Advanced Technology project in the Shanghai Aircraft Manufacturing Company. Besides, we thank the anonymous reviewers for insightful comments that helped us improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqing Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, S., Hu, Z., Liu, Z. et al. An adaptive genetic algorithm for demand-driven and resource-constrained project scheduling in aircraft assembly. Inf Technol Manag 18, 41–53 (2017). https://doi.org/10.1007/s10799-015-0223-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-015-0223-7

Keywords

Navigation