The effect of synergy enhancement on information technology portfolio selection | Information Technology and Management Skip to main content
Log in

The effect of synergy enhancement on information technology portfolio selection

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

This paper investigates how firms can use synergy to optimize their information technology portfolios. We begin by developing a framework for the portfolio selection by identifying three types of information technology synergy. Next, we use this framework to examine the impact of different types of synergy on the portfolio selection. Analytical models are developed to illustrate the roles of different types of the synergy, and analytical and computational methods are used to investigate the impact of the synergy. The analysis in this paper provides conditions in which synergy enhancement results in a more efficient or a less efficient portfolio. Our study establishes that firms with higher risk thresholds are more likely to obtain more efficient information technology portfolios by enhancing synergy, whereas firms with lower risk thresholds are less likely to benefit from enhancing synergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Markowitz HM (1994) The general mean-variance portfolio selection problem. Philos T Roy Soc A 347(1684):543–549

    Article  Google Scholar 

  2. Lucas HC (2005) Information technology: strategic decision making for managers. Wiley, Hoboken, NJ

    Google Scholar 

  3. Weill P, Vitale M (2002) What it infrastructure capabilities are needed to implement e-business models? Mis Q 1(1):17–34

    Google Scholar 

  4. Jeffery M, Leliveld L (2004) Best practices in it portfolio management. MIT Sloan Manag Rev 45(3):41–49

    Google Scholar 

  5. Nevo S, Wade MR (2010) The formation and value of it-enabled resources: antecedents and consequences of synergistic relationships. Mis Q 34(1):163–183

    Google Scholar 

  6. Tanriverdi H, Ruefli TW (2004) The role of information technology in risk/return relations of firms. J Assoc Inf Syst 5(11/12):421–447

    Google Scholar 

  7. Lucas HCJ (1999) Information technology and the productivity paradox: assessing the value of investing in it. Oxford University Press Inc, New York

    Google Scholar 

  8. Benaroch M, Jeffery M, Kauffman RJ, Shah S (2007) Option-based risk management: a field study of sequential information technology investment decisions. J Manage Inf Syst 24(2):103–140

    Article  Google Scholar 

  9. Benaroch M, Kauffman R (1999) A case for using real options pricing analysis to evaluate information technology project investments. Inf Syst Res 10(1):70–86

    Article  Google Scholar 

  10. Benaroch M, Kauffman RJ (2000) Justifying electronic banking network expansion using real options analysis. Mis Q 24(2):197–225

    Article  Google Scholar 

  11. Benaroch M, Lichtenstein Y, Robinson K (2006) Real options in information technology risk management: an empirical validation of risk-option relationships. Mis Q 30(4):827–864

    Google Scholar 

  12. Benaroch M, Shah S, Jeffery M (2006) On the valuation of multistage information technology investments embedding nested real options. J Manage Inf Syst 23(1):239–261

    Article  Google Scholar 

  13. Bardhan I, Bagchi S, Sougstad R (2004) Prioritizing a portfolio of information technology investment projects. J Manage Inf Syst 21(2):33–60

    Google Scholar 

  14. Myers SC (1984) Finance theory and financial strategy. Interfaces 14(1):126–137

    Article  Google Scholar 

  15. Klein RW, Bawa VS (1976) The effect of estimation risk on optimal portfolio choice. J Financ Econ 3(3):215–231

    Article  Google Scholar 

  16. Tu J, Zhou G (2011) Markowitz meets talmud: a combination of sophisticated and naive diversification strategies. J Financ Econ 99(1):204–215

    Article  Google Scholar 

  17. Markowitz H (1991) Portfolio selection: efficient diversification of investments, 2nd edn. B. Blackwell, Cambridge

    Google Scholar 

  18. Markowitz H (1987) Mean-variance analysis in portfolio choice and capital markets. B. Blackwell, Oxford, OX; New York, NY

  19. Bradley M, Desai A, Kim EH (1983) The rationale behind interfirm tender offers: information or synergy. J Financ Econ 11(1–4):183–206

    Article  Google Scholar 

  20. Eckbo BE (1983) Horizontal mergers, collusion, and stockholder wealth. J Financ Econ 11(1–4):241–273

    Article  Google Scholar 

  21. Kim SM, Mahoney JT (2006) Mutual commitment to support exchange: relation-specific it system as a substitute for managerial hierarchy. Strateg Manag J 27(5):401–423. doi:10.1002/smj.527

    Article  Google Scholar 

  22. Teece DJ (1980) Economies of scope and the scope of the enterprise. J Econ Behav Organ 1(3):223–247

    Article  Google Scholar 

  23. Willig RD (1979) Multiproduct technology and market structure. Am Econ Rev 69(2):346–351

    Google Scholar 

  24. Amihud Y, Lev B (1981) Risk reduction as a managerial motive for conglomerate mergers. Bell J Econ 12(2):605–617

    Article  Google Scholar 

  25. Christensen HK, Montgomery CA (1981) Corporate economic-performance–diversification strategy versus market-structure. Strateg Manag J 2(4):327–343

    Article  Google Scholar 

  26. Farjoun M (1998) The independent and joint effects of the skill and physical bases of relatedness in diversification. Strateg Manag J 19(7):611–630

    Article  Google Scholar 

  27. Miller DJ (2004) Firms technological resources and the performance effects of diversification: a longitudinal study. Strateg Manag J 25(11):1097–1119. doi:10.1002/smj.411

    Article  Google Scholar 

  28. Palepu K (1985) Diversification strategy, profit performance and the entropy measure. Strateg Manag J 6(3):239–255

    Article  Google Scholar 

  29. Rumelt RP (1982) Diversification strategy and profitability. Strateg Manag J 3(4):359–369

    Article  Google Scholar 

  30. Sirower ML (1997) The synergy trap. The Free Press, New York

    Google Scholar 

  31. Tanriverdi H, Venkatraman N (2005) Knowledge relatedness and the performance of multibusiness firms. Strateg Manag J 26(2):97–119. doi:10.1002/smj.435

    Article  Google Scholar 

  32. Panzar JC, Willig RD (1981) Economies of scope. Am Econ Rev 71(2):268–272

    Google Scholar 

  33. Hill CWL, Hoskisson RE (1987) Strategy and structure in the multiproduct firm. Acad Manag Rev 12(2):331–341

    Google Scholar 

  34. Robins J, Wiersema MF (1995) A resource-based approach to the multibusiness firm–empirical-analysis of portfolio interrelationships and corporate financial performance. Strateg Manag J 16(4):277–299

    Article  Google Scholar 

  35. Tanriverdi H (2006) Performance effects of information technology synergies in multibusiness firms. Mis Q 30(1):57–77

    Google Scholar 

  36. Milgrom P, Roberts J (1995) Complementarities and fit–strategy, structure, and organizational-change in manufacturing. J Account Econ 19(2–3):179–208

    Article  Google Scholar 

  37. McFarlan FW (1981) Portfolio approach to information-systems. Harv Bus Rev 59(5):142–150

    Google Scholar 

  38. Maizlish B, Handler R (2005) It portfolio management: unlocking the business value of technology. Wiley, New York

    Google Scholar 

  39. Dickinson MW, Thornton AC, Graves S (2001) Technology portfolio management: optimizing interdependent projects over multiple time periods. IEEE Trans Eng Manage 48(4):518–527

    Article  Google Scholar 

  40. Lee JW, Kim SH (2000) Using analytic network process and goal programming for interdependent information system project selection. Comput Oper Res 27(4):367–382

    Article  Google Scholar 

  41. Santhanam R, Kyparisis J (1995) A multiple criteria decision-model for information-system project selection. Comput Oper Res 22(8):807–818

    Article  Google Scholar 

  42. Agarwal R, Ferratt TW (2002) Enduring practices for managing it professionals. Commun ACM 45(9):73–79

    Article  Google Scholar 

  43. Feeny DF, Willcocks LP (1998) Core is capabilities for exploiting information technology. Sloan Manag Rev 39(3):9–21

    Google Scholar 

  44. Davis R, Thomas LG (1993) Direct estimation of synergy: a new approach to the diversity performance debate. Manage Sci 39(11):1134–1346

    Article  Google Scholar 

  45. Zhu K (2004) The complementarity of information technology infrastructure and e-commerce capability: a resource-based assessment of their business value. J Manage Inf Syst 21(1):167–202

    Google Scholar 

  46. Kroll Y, Levy H, Markowitz HM (1984) Mean-variance versus direct utility maximization. J Financ 39(1):47–61

    Article  Google Scholar 

  47. Liesiö J, Mild P, Salo A (2008) Robust portfolio modeling with incomplete cost information and project interdependencies. Eur J Oper Res 190(3):679–695

    Article  Google Scholar 

  48. Nayyar PR (1993) Performance effects of information asymmetry and economies of scope in diversified service firms. Acad Manag J 36(1):28–57. doi:10.2307/256511

    Article  Google Scholar 

  49. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58. doi:10.1145/1721654.1721672

    Article  Google Scholar 

  50. Tanriverdi H (2005) Information technology relatedness, knowledge management capability, and performance of multibusiness firms. Mis Quart 29(2):311–334

    Google Scholar 

  51. Rahman HA, Martí JR, Srivastava KD (2011) Quantitative estimates of critical infrastructures’ interdependencies on the communication and information technology infrastructure. Int J Crit Infrastruct 7(3):220–242

    Article  Google Scholar 

  52. Hugos MH, Hulitzky D (2011) Business in the cloud: what every business needs to know about cloud computing. Wiley, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wooje Cho.

Appendix

Appendix

Proof for Proposition 1A

The expected return from a portfolio (1 − x, x) is given by

$$ RT(1 - x,x) = r_{1} (1 - x) + r_{2} x + \beta r_{1} x(1 - x), $$

where \( \beta = \beta_{12} . \)

One way of obtaining the efficient frontier is to require \( RT(1 - x,x) = R_{0} , \) where R 0 is a particular expected return desired and then obtain the variance. For a two-fund problem, \( RT(1 - x,x) = R_{0} \) is sufficient to determine the portfolio (1 − \( x^{*} \),\( x^{*} \)).

From \( RT(1 - x,x) = R_{0} , \) we have

$$x = \frac{1}{{2\beta r_{1} }}\left[ {r_{2} - r_{1} + \beta r_{1} \pm \sqrt {(r_{2} - r_{1} + \beta r_{1} )^{2} - 4(R_{0} - r_{1} )\beta r_{1} } } \right]. $$

We assume that β is a small number; in this case, x has only one solution within the interval [0,1]:

$$ x^{*} = \frac{1}{{2\beta r_{1} }}\left[ {r_{2} - r_{1} + \beta r_{1} - \sqrt {(r_{2} - r_{1} + \beta r_{1} )^{2} - 4(R_{0} - r_{1} )\beta r_{1} } } \right]. $$

Consider \(R_0 = r_1+\varepsilon \) for an arbitrarily small positive number \( \varepsilon > 0. \) Then

$$ x^{*} = 1 - \frac{\varepsilon }{{r_{2} - r_{1} (1 + \beta_{12} )}} + O(\varepsilon^{2} ). $$

Then the variance v is

$$ \begin{aligned} v & = x^{{*2}} \sigma _{2}^{2} + 2x^{*} (1 - x^{*} )(1 + \beta x^{*} )\sigma _{1} \sigma _{2} \rho + (1 - x^{*} )^{2} (1 + \beta x^{*} )^{2} \sigma _{1}^{2} \\ & = \sigma _{2}^{2} + 2\varepsilon \frac{{\sigma _{1} \sigma _{2} \rho (1 + \beta ) - \sigma _{2}^{2} }}{{r_{2} - r_{1} (1 + \beta )}} + O(\varepsilon ^{2} ). \\ \end{aligned} $$

Now we obtain competitive statistics for the variance with respect to β:

$$ \frac{\partial v}{\partial \beta } = 2\varepsilon \frac{{\sigma_{1} \sigma_{2} \rho r_{2} - \sigma_{2}^{2} r_{1} }}{{[r_{2} - r_{1} (\beta + 1)]^{2} }} + O(\varepsilon^{2} ). $$

Thus, when \( \frac{{r_{1} /\sigma_{1} }}{{r_{2} /\sigma_{2} }} > \rho ,\frac{\partial v}{\partial \beta } < 0. \)

Proof for Proposition 1B

The expected return from a portfolio (1 − x, x) is given by

$$ RT(1 - x,x) = r_{1} (1 - x) + r_{2} x + \beta r_{1} x(1 - x), $$

where \( \beta = \beta_{12} . \)

One way of obtaining the efficient frontier is to require \( RT(1 - x,x) = R_{0} , \) where R 0 is a particular expected return desired and then obtain the variance. For a two-fund problem, \( RT(1 - x,x) = R_{0} \) is sufficient to determine the portfolio (1 − \( x^{*} \), \( x^{*} \))

From \( RT(1 - x,x) = R_{0} \), we have

$$ x = \frac{1}{{2\beta r_{1} }}\left[ {r_{2} - r_{1} + \beta r_{1} \pm \sqrt {(r_{2} - r_{1} + \beta r_{1} )^{2} \, - \, 4(R_{0} - r_{1} )\beta r_{1} } } \right]. $$

We assume that β is a small number; in this case, x has only one solution within the interval [0,1]:

$$ x^{*} = \frac{1}{{2\beta r_{1} }}\left[ {r_{2} - r_{1} + \beta r_{1} - \sqrt {(r_{2} - r_{1} + \beta r_{1} )^{2} \, - \, 4(R_{0} - r_{1} )\beta r_{1} } } \right]. $$

Consider \( R_{0} = r_{1} + \varepsilon \) for an arbitrarily small positive number \( \varepsilon > 0. \) Then \( x^{*} = \frac{\varepsilon }{{r_{2} - r_{1} (1 - \beta_{12} )}} + O(\varepsilon^{2} ). \)

Then the variance v is

$$ \begin{gathered} v = x^{*2} \sigma_{2}^{2} + 2x^{*}(1 - x^{*})(1 + \beta_{{}} x^{*})\sigma_{1}^{{}} \sigma_{2}^{{}} \rho + (1 - x)^{*2} (1 + \beta x)^{*2} \sigma_{1}^{2} \\ = \sigma_{1}^{2} + 2\varepsilon \frac{{\sigma_{1}^{{}} \sigma_{2}^{{}} \rho + (\beta_{{}} - 1)\sigma_{1}^{2} }}{{r_{2} - r_{1} (1 - \beta )}} + O(\varepsilon^{2} ). \\ \end{gathered} $$

Now we obtain competitive statistics for the variance with respect to β:

$$ \frac{\partial v}{\partial \beta } = 2\varepsilon \frac{{\sigma_{1} \sigma_{2} \rho r_{2} - \sigma_{1}^{2} r_{2} }}{{[r_{2} - r_{1} (1 - \beta )]^{2} }} + O(\varepsilon^{2} ). $$

Thus, when \( \frac{{r_{1} /\sigma_{1} }}{{r_{2} /\sigma_{2} }} < \frac{1}{\rho },\frac{\partial v}{\partial \delta } > 0. \)

Proof for Proposition 2A

We assume symmetric super-additive synergy, where \( \beta^{\prime } = \beta_{12}^{\prime } = \beta_{21}^{\prime } . \) The expected return from a portfolio (1 − x, x) is given by

$$ RT(1 - x,x) = r_{1} (1 - x) + r_{2} x + \beta^{\prime } r_{1} (1 - x) + \beta^{\prime } r_{2} x(1 - x). $$

One way of obtaining the efficient frontier is to require \( RT(1 - x,x) = R_{0} , \) where R 0 is a particular expected return desired and then obtain the variance. For a two-fund problem, \( RT(1 - x,x) = R_{0} \) is sufficient to determine the portfolio (1 − \( x^{*}, x^{*}\)).

From \( RT(1 - x,x) = R_{0} , \) we have

$$ x = \frac{1}{{2\beta^{\prime } (r_{1} + r_{2} )}}\left[ {r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} ) \pm \sqrt {(r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} ))^{2} - 4\beta^{\prime } (R_{0} - r_{1} )(r_{1} + r_{2} )} } \right]. $$

We assume that \( \beta^{\prime } \) is a small number \( \left( {\beta^{\prime } < \frac{{r_{2} - r_{1} }}{{r_{2} + r_{1} }}} \right); \) in this case, x has only one solution within the interval [0,1]:

$$ x^{*} = \frac{1}{{2\beta^{\prime } (r_{1} + r_{2} )}}\left\{ {r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} ) - \sqrt {\left[ {r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} )} \right]^{2} - 4\beta^{\prime } (R_{0} - r_{1} )(r_{1} + r_{2} )} } \right\}. $$

Consider \( R_{0} = r_{2} - \varepsilon , \) where r is an arbitrarily small positive number \( \varepsilon > 0. \) Then

$$ x^{*} = 1 - \frac{\varepsilon }{{r_{2} - r_{1} - \beta^{\prime}(r_{1} + r_{2} )}} + O(\varepsilon^{2} ). $$

Then the variance v is

$$ \begin{aligned} v &= (1 - x)^{*2} (1 + \beta^{\prime }x)^{*2} \sigma_{1}^{2} + x^{*2} (1 + \beta^{\prime } - \beta^{\prime} x)^{*2} \sigma_{2}^{2} + 2x^{*}(1 - x^{*})(1 + \beta^{\prime }x^{*})(1 + \beta^{\prime } - \beta^{\prime } x^{*})\sigma_{1}\sigma_{2} \rho \\ &= \sigma_{2}^{2} + 2\varepsilon\frac{{\sigma_{1}^{{}} \sigma_{2}^{{}} \rho (1 + \beta^{\prime } ) -\sigma_{2}^{2} }}{{r_{2} - r_{1} - \beta^{\prime } (r_{1} + r_{2})}} + O(\varepsilon^{2} ). \\ \end{aligned} $$

Now we obtain the competitive statistics for the variance with respect to \( \beta^{\prime}: \)

$$ \frac{\partial v}{{\partial \beta^{\prime } }} = 4\varepsilon \frac{{\sigma_{1} \sigma_{2} \rho r_{2} - \sigma_{2}^{2} r_{1} }}{{\left[ {r_{2} - r_{1} - \beta^{\prime } (r_{1} + r_{2} )} \right]^{2} }} + O(\varepsilon^{2} ). $$

Thus, when \( \frac{{r_{1} /\sigma_{1} }}{{r_{2} /\sigma_{2} }} > \rho ,\frac{\partial v}{{\partial \beta^{\prime } }} < 0. \)

Proof for Proposition 2B

We assume symmetric super-additive synergy, where \( \beta^{\prime } = \beta_{12}^{\prime } = \beta_{21}^{\prime } . \) The expected return from a portfolio (1 − x, x) is given by

$$ RT(1 - x,x) = r_{1} (1 - x) + r_{2} x + \beta^{\prime } r_{1} (1 - x) + \beta^{\prime } r_{2} x(1 - x). $$

One way of obtaining the efficient frontier is to require \( RT(1 - x,x) = R_{0} , \) where R 0 is a particular expected return desired and then obtain the variance. For a two-fund problem, \( RT(1 - x,x) = R_{0} \) is sufficient to determine the portfolio (1 − \( x^{*} \), \( x^{*} \)).

From \( RT(1 - x,x) = R_{0} \), we have

$$ x = \frac{1}{{2\beta^{\prime } (r_{1} + r_{2} )}}\left\{ {r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} ) \pm \sqrt {\left[ {r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} )} \right]^{2} - 4\beta^{\prime } (R_{0} - r_{1} )(r_{1} + r_{2} )} } \right\}. $$

We assume that β is a small number (\( \delta \le \frac{{r_{2} - r_{1} }}{{r_{1} + r_{2} }} \)); in this case, x has only one solution within the interval [0,1]:

$$ x^{*} = \frac{1}{{2\beta^{\prime } (r_{1} + r_{2} )}}\left\{ {r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} ) - \sqrt {\left[ {r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} )} \right]^{2} - 4\beta^{\prime } (R_{0} - r_{1} )(r_{1} + r_{2} )} } \right\}. $$

Consider \( R_{0} = r_{1} + \varepsilon , \) where r is an arbitrarily small positive number \( \varepsilon > 0. \) Then

$$ x^{*} = \frac{\varepsilon }{{r_{2} - r_{1} - \beta^{\prime } (r_{1} + r_{2} )}} + O(\varepsilon^{2} ). $$

Then the variance v is

$$ v = \sigma_{1}^{2} + 2\varepsilon \frac{{\sigma_{1} \sigma_{2} \rho (1 + \beta^{\prime } ) + \sigma_{1}^{2} (\beta^{\prime } - 1)}}{{r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} )}} + O(\varepsilon^{2} ). $$

Now we obtain competitive statistics for the variance with respect to β:

$$ \frac{\partial v}{{\partial \beta^{\prime } }} = 4\varepsilon \frac{{\sigma_{1} \sigma_{2} \rho r_{1} - \sigma_{1}^{2} r_{2} }}{{\left[ {r_{2} - r_{1} + \beta^{\prime } (r_{1} + r_{2} )} \right]^{2} }} + O(\varepsilon^{2} ). $$

Thus, when \( \frac{{r_{1} /\sigma_{1} }}{{r_{2} /\sigma_{2} }} < \frac{1}{\rho },\frac{\partial v}{{\partial \beta^{\prime } }} > 0. \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, W., Shaw, M.J. & Kwon, H.D. The effect of synergy enhancement on information technology portfolio selection. Inf Technol Manag 14, 125–142 (2013). https://doi.org/10.1007/s10799-012-0150-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-012-0150-9

Keywords

Navigation