Modeling of emergency response decision-making process using stochastic Petri net: an e-service perspective | Information Technology and Management Skip to main content
Log in

Modeling of emergency response decision-making process using stochastic Petri net: an e-service perspective

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

In this paper, we address the emergency response decision-making process based on stochastic Petri net from an e-service perspective. The emergency response decision-making process is modeled and designed considering service management. The process is modeled based on stochastic Petri net and a solution methodology is proposed to solve the model. In addition, an isomorphic Markov Chain model and a service performance model are developed for measuring and evaluating the service performance of emergency response decision-making process. Finally, a case study is presented to show the viability of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anthopoulos LG, Siozos P, Tsoukalas IA (2007) Applying participatory design and collaboration in digital public services for discovering and re-designing e-Government services. Gov Inf Q 24(2):353–376

    Article  Google Scholar 

  2. Balduzzi F, Giua A, Menga G (2000) First-order hybrid petri nets: a model for optimization and control. IEEE Transact Robotics Automat 16(4):382–399

    Article  Google Scholar 

  3. Bevilacqua M, Ciarapicab FE, Paciarotti C (2012) Business process reengineering of emergency management procedures: a case study. Saf Sci 50(5):1368–1376

    Article  Google Scholar 

  4. Cabodi G, Camurati P, Quer S (2001) Reachability analysis of large circuits using disjunctive partitioning and partial iterative squaring. J Syst Architect 47(2):163–179

    Article  Google Scholar 

  5. Capozucca A, Guelfi N (2010) Modelling dependable collaborative time-constrained business processes. Enterp Inf Syst 4(2):153–214

    Article  Google Scholar 

  6. Chen A, Chen N, Li JM (2012) During-incident process assessment in emergency management: concept and strategy. Saf Sci 50(1):90–102

    Article  Google Scholar 

  7. Chuang L, Yang O, Bo Z, Tian LG (2002) An approach to performance equivalent simplification and analysis of stochastic Petri nets. Acta Eelectronica Sinica 30(11):1–5

    Google Scholar 

  8. Du Y, Qi L, Zhou M (2011) A vector matching method for analysing logic Petri nets. Enter Inf Sys 5(4):449–468

    Article  Google Scholar 

  9. Edgington TM, Raghu TS, Vinze AS (2010) Using process mining to identify coordination patterns in IT service management. Decis Support Syst 49(2):175–186

    Article  Google Scholar 

  10. Erol O, Sauser B, Mansouri M (2010) A framework for investigation into extended enterprise resilience. Ent Inf Syst 4(2):111–136

    Article  Google Scholar 

  11. Franklin A, Liu Y, Li Z, Nguyen V, Johnson TR, Robinson D, Okafor N, King B, Patel VL, Zhang JJ (2011) Opportunistic decision making and complexity in emergency care. J Biomed Inform 44(3):469–476

    Article  Google Scholar 

  12. Friedler F (2010) Process integration, modelling and optimisation for energy saving and pollution reduction. Appl Therm Eng 30(16):2270–2280

    Article  Google Scholar 

  13. German R (2000) Markov regenerative stochastic Petri nets with general execution policies: supplementary variable analysis and a prototype tool. Perform Eval 39(1–3):165–188

    Article  Google Scholar 

  14. Gibb F, Buchanan S, Shah S (2006) An integrated approach to process and service management. Int J Inf Manage 26(1):44–58

    Article  Google Scholar 

  15. Gremler DD (2004) The critical incident technique in service research. J Serv Res 7(1):65–89

    Article  Google Scholar 

  16. Gunawan LT, Alers H, Brinkman WP, Neerincx MA (2011) Distributed collaborative situation-map making for disaster response. Interact Comput 23(4):308–316

    Article  Google Scholar 

  17. Hasan S, Ukkusuri SV (2011) A threshold model of social contagion process for evacuation decision making. Transp Res Part B Methodol 45(10):1590–1605

    Article  Google Scholar 

  18. Ju YB, Wang AH, Liu XY (2012) Evaluating emergency response capacity by fuzzy AHP and 2-tuple fuzzy linguistic approach. Expert Syst Appl 39(8):6972–6981

    Article  Google Scholar 

  19. Kennedy J, Ashmore J, Babister J, Kelman I (2008) The meaning of build back better: evidence from post-tsunami Aceh and Sri Lanka. J Contingen Crisis Manage 16(1):24–36

    Article  Google Scholar 

  20. Li D, Sun XL, Gao JJ, Gu SS, Zheng XJ (2011) Reachability determination in acyclic Petri nets by cell enumeration approach. Automatica 47(9):2094–2098

    Article  Google Scholar 

  21. Li L (1997) Relationships between determinants of hospital quality management and service quality performance-a path analytic model. Omega 25(5):535–545

    Article  Google Scholar 

  22. Li L, Valerdi R, Warfield JN (2008) Advances in enterprise information systems. Inf Syst Front 10(5):499–501

    Article  Google Scholar 

  23. Li L, Xu L (1991) An integrated information system for the intervention and prevention of AIDS. Int J Biomed Comput 29(3–4):191–206

    Article  Google Scholar 

  24. Li L, Xu L (1992) Application of information systems to AIDS risk reduction. Inf Health Social Care 17(4):199–214

    Article  Google Scholar 

  25. Li L, Xu L, Jeng HA, Naik D, Allen T, Frontini M (2008) Creation of environmental health information system for public health service: a pilot study. Inf Syst Front 10(5):531–542

    Article  Google Scholar 

  26. Lindell MK (2000) An overview of protective action decision-making for a nuclear power plant emergency. J Hazard Mater 75(2–3):113–129

    Article  Google Scholar 

  27. Liu D, Deters R, Zhang WJ (2010) Architectural design for resilience. Enterp Inf Syst 4(2):137–152

    Article  Google Scholar 

  28. Liu R, Kumar A, van der Aalst W (2007) A formal modeling approach for supply chain event management. Decis Support Syst 43(3):761–778

    Article  Google Scholar 

  29. Liu W, Du Y, Yan C (2012) Soundness preservation in composed logical time workflow nets. Enterp Inf Syst 6(1):95–113

    Article  Google Scholar 

  30. Luo J, Xu L, Jamont J, Zeng L, Shi Z (2007) Flood decision support system on agent grid: method and implementation. Enterp Inf Syst 1(1):49–68

    Article  Google Scholar 

  31. Ma J, Wang K, Xu L (2011) Modelling and analysis of workflow for lean supply chains. Enterp Inf Syst 5(4):423–447

    Article  Google Scholar 

  32. Mesquida AL, Mas A, Amengual E, Calvo-Manzano J (2012) IT service management process improvement based on ISO/IEC 15504: a systematic review. Inf Softw Technol 54(3):239–247

    Article  Google Scholar 

  33. Molloy MK (1982) Performance analysis using stochastic Petri nets. IEEE Trans Comput 31(9):913–917

    Article  Google Scholar 

  34. Nivolianitou Z, Synodinou B (2011) Towards emergency management of natural disasters and critical accidents: the Greek experience. J Environ Manage 92(10):2657–2665

    Article  Google Scholar 

  35. Papadomichelaki X, Mentzas G (2012) e-GovQual: a multiple-item scale for assessing e-government service quality. Gov Inf Q 29(1):98–109

    Article  Google Scholar 

  36. Sayegh L, Anthony WP, Perrewe PL (2004) Managerial decision-making under crisis: the role of emotion in an intuitive decision process. Hum Res Manage Rev 14(2):179–199

    Article  Google Scholar 

  37. Shan S, Wang L, Wang J, Hao Y, Hua F (2011) Research on e-government evaluation model based on the principal component analysis. Inf Technol Manage 12(2):173–185

    Article  Google Scholar 

  38. Tan W, Jiang C, Li L, Lv Z (2008) Role-oriented process-driven enterprise cooperative work using the combined rule scheduling strategies. Inf Syst Front 10(5):519–529

    Article  Google Scholar 

  39. Tan W, Xu W, Yang F, Xu L, Jiang C (2012) A framework for service enterprise workflow simulation with multi-agents cooperation. Enterp Inf Sys. doi:10.1080/17517575.2012.660503

  40. Tavana M (2008) Dynamic process modeling using Petri nets with applications to nuclear power plant emergency management. Int J Simul Process Model 4(2):130–138

    Article  Google Scholar 

  41. Vazquez CR, Silva M (2011) Timing and liveness in continuous Petri nets. Automatica 47(2):283–290

    Article  Google Scholar 

  42. Viriyasitavat W, Xu L, Martin A (2012) SWSpec: the requirements specification language in service workflow environments. IEEE Transact Ind Inf. doi:10.1109/TII.2011.2182519

  43. Wang J, Gao F, Ip W (2010) Measurement of resilience and its application to enterprise information systems. Enterp Inf Syst 4(2):215–223

    Article  Google Scholar 

  44. Wang L, Zeng J, Xu L (2011) A decision support system for substage-zoning filling design of rock-fill dams based on particle swarm optimization. Inf Technol Manage 12(2):111–119

    Article  Google Scholar 

  45. Xie K, Chen G, Wu Q, Liu Y, Wang P (2011) Research on the group decision-making about emergency event based on network technology. Inf Technol Manage 12(2):137–147

    Article  Google Scholar 

  46. Xie K, Liu J, Chen G, Wang P, Chaudhry S (2012) Group decision-making in an unconventional emergency situation using agile Delphi approach. Inf Technol Manage. doi:10.1007/s10799-012-0122-0

  47. Xu L (2011) Enterprise systems: state-of-the-art and future trends. IEEE Trans Industr Inf 7(4):630–640

    Article  Google Scholar 

  48. Xu L, Li L (1992) An information systems approach to the intervention and prevention of AIDS. Inf Process Manage 28(2):269–280

    Article  Google Scholar 

  49. Xu L, Li L (1993) An expert system approach to AIDS intervention and prevention. Expert Syst Appl 6(2):119–127

    Article  Google Scholar 

  50. Xu L, Li L (2000) A hybrid system applied to epidemic screening. Expert Syst 17(2):81–89

    Article  Google Scholar 

  51. Xu L, Liang N, Gao Q (2008) An integrated approach for agricultural ecosystem management. IEEE Transact SMC Part C 38(4):590–599

    Google Scholar 

  52. Xu L, Liu H, Wang S, Wang K (2009) Modelling and analysis techniques for cross-organizational workflow systems. Syst Res Behav Sci 26(3):367–390

    Article  Google Scholar 

  53. Xu L, Viriyasitavat W, Ruchikachorn P, Martin A (2012) Using propositional logic for requirements verification of service workflow. IEEE Transact Ind Inf. doi:10.1109/TII.2012.2187908

  54. Xu S, Xu L (2011) Management: a scientific discipline for humanity. Inf Technol Manage 12(2):51–54

    Article  Google Scholar 

  55. Xuan H, Xu L, Li Lu (2009) A CA-based epidemic model for HIV/AIDS transmission with heterogeneity. Ann Oper Res 168(1):81–99

    Article  Google Scholar 

  56. Ye XM, Zhou JT, Song XY (2003) On reachability graphs of Petri nets. Comput Electr Eng 29(2):263–272

    Article  Google Scholar 

  57. Yen HC (2006) Introduction to Petri net theory. In: Esik Zoltan, Martin-Vide Carlos, Mitrana Victor (eds) Recent advances in formal languages and applications Studies in computational intelligence, Springer Berlin, Heidelberg, 25, 343–373

  58. Youness OS, El-Kilani WS, El-Wahed WFA (2008) A behavior and delay equivalent Petri net model for performance evaluation of communication protocols. Comput Commun 31(10):2210–2230

    Article  Google Scholar 

  59. Yu L, Lai KK (2011) A distance-based group decision-making methodology for multi-person multi-criteria emergency decision support. Decis Support Syst 51(2):307–315

    Article  Google Scholar 

  60. Zhang W (2010) Guest editor’s foreword. Enterp Inf Syst 4(2):95–97

    Article  Google Scholar 

  61. Zhang W, Lin Y (2010) On the principle of design of resilient systems-application to enterprise information systems. Enterp Inf Syst 4(2):99–110

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China under the grant 70971004 and 70971005, National Social Science Foundation of China under the grant 11AZD096. We also like to thank the anonymous reviewers for their insightful comments that helped us improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, S., Wang, L. & Li, L. Modeling of emergency response decision-making process using stochastic Petri net: an e-service perspective. Inf Technol Manag 13, 363–376 (2012). https://doi.org/10.1007/s10799-012-0128-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-012-0128-7

Keywords

Navigation