Analysis of emerging technology adoption for the digital content market | Information Technology and Management Skip to main content
Log in

Analysis of emerging technology adoption for the digital content market

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

The digital content market is undergoing an evolution in networking and digitalization technologies, offering diverse information and services. Due to the characteristics of these emerging technologies, the digital content market is growing rapidly and traditional content providers face service transformation decisions. While a majority of the previous technology adoption studies have focused on the viewpoints of users and customers, cost reduction, or electronic channel related technologies, in this research we analyze the emerging technology adoption decisions of competing firms for providing new content services from a strategic perspective. Utilizing game theoretical models, we examine the effects of market environments (technology cost, channel cannibalization, brand power, brand extension, information asymmetry and market uncertainty) on firms’ adoption decisions. This research contributes a number of unique and interesting implications for the issues of emerging technology adoption for new content service provision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adda J, Ottaviani M (2005) The transition to digital television. Econ Policy 20(41):160–209

    Article  Google Scholar 

  2. Au Y, Kauffman R (2001) Should we wait? Network externalities, compatibility, and electronic billing adoption. J Manage Inform Syst 18(2):47–63

    Google Scholar 

  3. Balasubramanian S (1998) Mail versus mall: a strategic analysis of competition between direct marketers and conventional retailers. Market Sci 17:181–195

    Article  Google Scholar 

  4. Biyalogorsky E, Naik P (2003) Clicks and mortar: the effect of on-line activities on off-line sales. Market Lett 14(1):21–32

    Article  Google Scholar 

  5. Bockstedt JC, Kauffman RJ, Riggins FJ (2006) The move to artist-led on-line music distribution: a theory-based assessment and prospects for structural changes in the digital music market. Int J Electron Commer 10(3):7–38

    Article  Google Scholar 

  6. Bower J, Christensen C (1995) Disruptive technologies: catching the wave. Harvard Bus Rev 73:43–53

    Google Scholar 

  7. Brynjolfsson E, Hu YJ, Rahman MS (2009) Battle of the retail channels: how product selection and geography drive cross-channel competition. Manage Sci 55(11):1755–1765

    Article  Google Scholar 

  8. Chellappa RK, Shivendu S (2003) Pay now or pay later? Managing digital product supply chains. In: International conference on electronic commerce, Pittsburgh, Pennsylvania. ACM, pp 230–234

  9. Cheng Z, Nault BR (2007) Internet channel entry: retail coverage and entry cost advantage. Inform Technol Manage 8(2):111–132

    Article  Google Scholar 

  10. Chiang WK, Chhajed D, Hess JD (2003) Direct marketing, indirect profits: a strategic analysis of dual-channel supply-chain design. Manage Sci 49:1–20

    Article  Google Scholar 

  11. Choi J, Thum M (1998) Market structure and the timing of technology adoption with network externalities. Eur Econ Rev 42(2):225–244

    Article  Google Scholar 

  12. Danaher B, Dhanasobhon S, Smith MD, Telang R (2010) Converting pirates without cannibalizing purchasers: the impact of digital distribution on physical sales and internet piracy. Market Sci 29(6):1138–1151

    Article  Google Scholar 

  13. Davis R (2001) The digital dilemma. Commun ACM 44(2):77–83

    Article  Google Scholar 

  14. Deleersnyder B, Geyskens I, Gielens K, Dekimpe M (2002) How cannibalistic is the Internet channel? a study of the newspaper industry in the United Kingdom and the Netherlands. Int J Res Mark 19(4):337–348

    Article  Google Scholar 

  15. Forman C, Ghose A, Goldfarb A (2009) Competition between local and electronic markets: how the benefit of buying online depends on where you live. Manage Sci 55(1):47–57

    Article  Google Scholar 

  16. Fudenberg D, Tirole J (1985) Preemption and rent equalization in the adoption of new technology. Rev Econ Stud 52(3):383–401

    Article  Google Scholar 

  17. Gallagher S (2002) Key issues to consider in assessing the digital content landscape. ECAR Res Bull 2002(14):1–11

  18. Gans J, Stern S (2003) The product market and the market for ideas: commercialization strategies for technology entrepreneurs. Res Policy 32(2):333–350

    Article  Google Scholar 

  19. Geyskens I, Gielens K, Dekimpe MG (2002) The market valuation of internet channel additions. J Market 66(2):102–119

    Article  Google Scholar 

  20. Global entertainment and media outlook 2010–2014 (2010) PricewaterhouseCoopers. Available at http://www.einnews.com/pr-news/90509-pricewaterhousecoopers-releases-global-entertainment-and-media-outlook-2010-2014. Accessed 12 Jun 2011

  21. Gotz G (2000) Strategic timing of adoption of new technologies under uncertainty: a note. Int J Ind Organ 18(2):369–379

    Article  Google Scholar 

  22. Han JK, Kim N, Kim HB (2001) Entry barriers: a dull-, one-, or two-edged sword for incumbents? Unraveling the paradox from a contingency perspective. J Market 65(1):1–14

    Article  Google Scholar 

  23. Hoppe H (2000) Second-mover advantages in the strategic adoption of new technology under uncertainty. Int J Ind Organ 18(2):315–338

    Article  Google Scholar 

  24. Hoppe H (2002) The timing of new technology adoption: theoretical models and empirical evidence. Manch Sch 70(1):56–76

    Article  Google Scholar 

  25. Huisman K, Kort P (2004) Strategic technology adoption taking into account future technological improvements: a real options approach. Eur J Oper Res 159(3):705–728

    Article  Google Scholar 

  26. IFPI. Digital music report. Available at http://www.ifpi.org/site-content/library/digital-music-report-2006.pdf. Accessed 12 Jun 2011

  27. Jensen R (1982) Adoption and diffusion of an innovation of uncertain profitability. J Econ Theory 27(1):182–193

    Article  Google Scholar 

  28. Jeong BK, Khouja M, Zhao K (2011) The impacts of piracy and supply chain contracts on digital music channel performance. Decis Support Syst (in Press)

  29. Jiang Y, Katsamakas E (2010) Impact of e-book technology: ownership and market asymmetries in digital transformation. Electron Commer Res Appl 9(5):386–399

    Google Scholar 

  30. Katz M, Shapiro C (1986) Technology adoption in the presence of network externalities. J Polit Econ 94(4):822–841

    Article  Google Scholar 

  31. Kim C, Oh E, Shin N (2010) An empirical investigation of digital content characteristics, value, and flow. J Comput Inform Syst 50(4):79–87

    Google Scholar 

  32. Mason George R, Charlotte H (1994) An approach for identifying cannibalization within product line extensions and multi-brand strategies. J Bus Res 31(2–3):163–170

    Article  Google Scholar 

  33. Milliot J, Reid C (2011) It’s a digital book world. Available at http://www.publishersweekly.com/pw/by-topic/digital/conferences/article/45946-it-s-a-digital-book-world.html. Accessed Nov 19 2011

  34. Premkumar GP (2003) Alternate distribution strategies for digital music. Comm ACM 46(9):89–95

    Article  Google Scholar 

  35. Reddy S, Holak S, Bhat S (1994) To extend or not to extend: success determinants of line extensions. J Market Res 31(2):243–262

    Article  Google Scholar 

  36. Reinganum JF (1981) On the diffusion of new technology: a game theoretic approach. Rev Econ Stud 48(3):395–405

    Article  Google Scholar 

  37. Reinganum JF (1981) Market structure and the diffusion of new technology. Bell J Econ 12(2):618–624

    Article  Google Scholar 

  38. Reynolds R (2011) Trends influencing the growth of digital textbooks in US higher education. Publish Res Q 27(2):178–187

    Google Scholar 

  39. Riordan M (1992) Regulation and preemptive technology adoption. Rand J Econ 23(3):334–349

    Article  Google Scholar 

  40. Shapiro C, Varian HR (1999) Information rules: a strategic guide to the network economy. Harvard Business Press, Boston

    Google Scholar 

  41. Smith MD, Telang R (2009) Competing with free: the impact of movie broadcasts on DVD sales and internet piracy. MIS Q 33(2):321–338

    Google Scholar 

  42. Smith MD, Telang R (2010) Piracy or promotion? The impact of broadband Internet penetration on DVD sales. Inform Econ Policy 22(4):289–298

    Article  Google Scholar 

  43. Stenbacka R, Tombak M (1994) Strategic timing of adoption of new technologies under uncertainty. Int J Ind Organ 12(3):387–411

    Article  Google Scholar 

  44. Teece D (1986) Profiting from technological innovation: implications for integration, collaboration, licensing and public policy. Res Policy 15(6):285–305

    Article  Google Scholar 

  45. Tsay AA, Agrawal N (2004) Channel conflict and coordination in the e-commerce age. Prod Oper Manag 13(1):93–110

    Article  Google Scholar 

  46. Waldfogel J (2009) Lost on the web: does web distribution stimulate or depress television viewing? Inform Econ Policy 21(2):158–168

    Article  Google Scholar 

  47. Yan R, Pei Z (2009) Retail services and firm profit in a dual-channel market. J Retailing Consum Serv 16(4):306–314

    Article  Google Scholar 

  48. Yao DQ, Liu JJ (2005) Competitive pricing of mixed retail and e-tail distribution channels. Omega 33(3):235–247

    Article  Google Scholar 

  49. Yoo WS, Lee E (2011) Internet channel entry: a strategic analysis of mixed channel structures. Market Sci 30(1):29–41

    Article  Google Scholar 

  50. Yue X, Liu J (2006) Demand forecast sharing in a dual-channel supply chain. Eur J Oper Res 174(1):646–667

    Article  Google Scholar 

  51. Zhu K, Weyant J (2003) Strategic decisions of new technology adoption under asymmetric information: a game-theoretic model. Decis Sci 34(4):643–675

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two Special Issue Guest Editors, Robert Kauffman and Angsana Techatassanasoontorn, and the four anonymous reviewers for their valuable comments and helpful suggestions, which significantly improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Ming Li.

Appendix

Appendix

1.1 Proposition 1

Proof

The conditions for Nash equilibrium outcome (I, I) are \( \pi_{A}^{II} > \pi_{A}^{NI} \;{\text{and}}\;\pi_{B}^{II} > \pi_{B}^{IN} . \) That is \( \eta \Uptheta_{N} > C_{A} \;{\text{and}}\;\left( {1 - \eta } \right)\Uptheta_{N} > C_{B} , \) we have \( \Uptheta_{N} > \max \left\{ {C_{A} /\eta , < C_{B} /\left( {1 - \eta } \right)} \right\}. \)

The conditions for Nash equilibrium outcome (I, N) are \( \pi_{A}^{IN} > \pi_{A}^{NN} \;{\text{and}}\;\pi_{B}^{IN} > \pi_{B}^{II} . \) That is \( \Uptheta_{N} - \alpha \delta \Uptheta_{T} > C_{A} \;{\text{and}}\;\left( {1 - \eta } \right)\Uptheta_{N} < C_{B} ,\) we have \( C_{A} + \alpha \delta \Uptheta_{T} < \Uptheta_{N} < C_{B} /\left( {1 - \eta } \right). \)

The conditions for Nash equilibrium outcome (N, I) are \( \pi_{A}^{NI} > \pi_{A}^{II} \;{\text{and}}\;\pi_{B}^{NI} > \pi_{B}^{NN} . \) That is \( \eta \Uptheta_{N} < C_{A} \;{\text{and}}\;\Uptheta_{N} - \delta (1 - \alpha )\Uptheta_{T} > C_{B} . \) We have \( C_{B} + \delta (1 - \alpha )\Uptheta_{T} < \Uptheta_{N} < C_{A} /\eta . \)

The conditions for Nash equilibrium outcome (N, N) are \( \pi_{A}^{NN} > \pi_{A}^{IN} \;{\text{and}}\;\pi_{B}^{NN} > \pi_{B}^{NI} . \) That is \( \Uptheta_{N} - \alpha \delta \Uptheta_{T} < C_{A} \;{\text{and}}\;\Uptheta_{N} - (1 - \alpha )\delta \Uptheta_{T} < C_{B} . \) We have \( \Uptheta_{N} < \min \left\{ {C_{A} + \alpha \delta \Uptheta_{T} ,C_{B} + \left( {1 - \alpha } \right)\delta \Uptheta_{T} } \right\}. \)

1.2 Corollary 1

Proof

The conditions for pure Nash equilibrium adoption strategy \( \left( {\text{I,N}} \right),\;\left( {\text{N,I}} \right) \) are \( C_{A} + \alpha \delta \Uptheta_{T} < \Uptheta_{N} < C_{B} /\left( {1 - \eta } \right) \) and \( C_{B} + \delta (1 - \alpha )\Uptheta_{T} < \Uptheta_{N} < C_{A} /\eta \) respectively.

Multiple pure Nash equilibra \( \left( {\text{I,N}} \right) ,\left( {\text{N,I}} \right) \) occur when all the above conditions are satisfied or equivalently,

$$ \max \left\{ {C_{A} + \alpha \delta \Uptheta_{T} ,C_{B} + \left( {1 - \alpha } \right)\delta \Uptheta_{T} } \right\} < \Uptheta_{N} < \min \left\{ {C_{A} /\eta , < C_{B} /\left( {1 - \eta } \right)} \right\}. $$

Multiple pure Nash equilibra, \( \left( {\text{I,I}} \right),\;\left( {\text{N,N}} \right) \) occur when all the above conditions are satisfied or equivalently,

$$ \max \left\{ {C_{A} /\eta , < C_{B} /\left( {1 - \eta } \right)} \right\} < \Uptheta_{N} < \min \left\{ {C_{A} + \alpha \delta \Uptheta_{T} ,C_{B} + \left( {1 - \alpha } \right)\delta \Uptheta_{T} } \right\}. $$

1.3 Corollary 2

Proof

The conditions for the existence of mixed Nash adoption strategy is all the conditions in Eq. 9 are not satisfied. \( ( {\text{I, I)}} \) and \( ( {\text{I, N)}} \) will not occur if \( \Uptheta_{N} < \min \left( {C_{A} + \alpha \delta \Uptheta_{T} ,C_{B} /\left( {1 - \eta } \right)} \right). \) \( ( {\text{N, I)}} \) and \( ( {\text{N, N)}} \) will not occur if \( \Uptheta_{N} > \max \left( {C_{B} + \delta (1 - \alpha )\Uptheta_{T} ,C_{A} /\eta } \right). \) We have

$$ \max \left( {C_{B} + \delta (1 - \alpha )\Uptheta_{T} ,C_{A} /\eta } \right) < \Uptheta_{N} < \min \left( {C_{A} + \alpha \delta \Uptheta_{T} ,C_{B} /\left( {1 - \eta } \right)} \right) $$

Similarly, the other scenario is \( ( {\text{I, I)}} \) and \( ( {\text{I, N)}} \) will not occur if \( \Uptheta_{N} < \min \left( {C_{B} + \delta (1 - \alpha )\Uptheta_{T} ,C_{A} /\eta } \right). \) \( ( {\text{N, I)}} \) and \( ( {\text{N, N)}} \) will not occur if \( \Uptheta_{N} > \max \left( {C_{A} + \alpha \delta \Uptheta_{T} ,C_{B} /\left( {1 - \eta } \right)} \right). \) We have \( \max \left( {C_{A} + \alpha \delta \Uptheta_{T} ,C_{B} /\left( {1 - \eta } \right)} \right) < \Uptheta_{N} < \min \left( {C_{B} + \delta (1 - \alpha )\Uptheta_{T} ,C_{A} /\eta } \right) \).

1.4 Proposition 2

Proof

The mixed strategy Nash equilibrium is described by both Eqs. 16 and 17 are satisfied. We have \( \left( {\gamma_{A}^{*} ,\gamma_{B}^{*} } \right) = \left( {\hat{\gamma }_{A} ,\hat{\gamma }_{B} } \right). \)

1.5 Corollary 3

Proof

(i) From (18), we have \( \partial \gamma_{i}^{*} /\partial C_{i} = 0\quad {\text{for}}\quad i \in \left\{ {A,B} \right\}. \) (ii) \( \partial \gamma_{A}^{*} /\partial C_{B} = \frac{{ - \left( {\eta \Uptheta_{N} - \left( {1 - \alpha } \right)\delta \Uptheta_{T} } \right)}}{{\left( {\eta \Uptheta_{N} - \left( {1 - \alpha } \right)\delta \Uptheta_{T} } \right)^{2} }} < 0\quad {\text{given}}\quad G_{1} > 0. \) (iii) \( \frac{{\partial r_{B}^{*} }}{{\partial C_{A} }} = \frac{{\alpha \delta \Uptheta_{T} - \left( {1 - \eta } \right)\Uptheta_{N} }}{{\left( {\alpha \delta \Uptheta_{T} - \left( {1 - \eta } \right)\Uptheta_{N} } \right)^{2} }} > 0 \) when G 2 < 0 (brand extension), but \( \frac{{\partial r_{B}^{*} }}{{\partial C_{A} }} < 0 \) when G 2 > 0 (brand counter-extension).

1.6 Corollary 4

Proof

(i) Since \( 0 \le r_{A}^{*} \le 1, \) we have \( \left( {1 - \eta } \right)\Uptheta_{N} - C_{B} \le 0 \) and \( \frac{{\partial r_{A}^{*} }}{{\partial \left( {\delta \Uptheta_{T} } \right)}} = \frac{{\left( {1 - \alpha } \right)\left( {\left( {1 - \eta } \right)\Uptheta_{N} - C_{B} } \right)}}{{\left( {\eta \theta_{N} - (1 - \alpha )\delta \Uptheta_{T} } \right)^{2} }} \le 0. \) (ii) Since \( 0 \le r_{B}^{*} \le 1 \), we have \( \eta \Uptheta_{N} - C_{A} \le 0 \) when G 2 > 0 and \( \eta \Uptheta_{N} - C_{A} \ge 0 \) when G 2 < 0. Therefore, \( \frac{{\partial r_{B}^{*} }}{{\partial \left( {\delta \Uptheta_{T} } \right)}} = \frac{{\alpha \left( {\eta \Uptheta_{N} - C_{A} } \right)}}{{\left( {\alpha \delta \Uptheta_{T} - (1 - \eta )\Uptheta_{N} } \right)^{2} }} \le 0 \) when G 2 > 0 (brand counter-extension) but\( \frac{{\partial r_{B}^{*} }}{{\partial \left( {\delta \Uptheta_{T} } \right)}} \ge 0 \) when G 2 < 0 (brand extension).

1.7 Corollary 5

Proof

(i) Since \( r_{A}^{*} \ge 0 \) and G 1 ≥ 0, we have \( \left( {\Uptheta_{N} - (1 - \alpha )\delta \Uptheta_{T} } \right) - C_{B} \ge 0 \) and \( \frac{{\partial r_{A}^{*} }}{\partial \eta } = \frac{{\Uptheta_{N} \left( {C_{B} + \left( {1 - \alpha } \right)\delta \Uptheta_{T} - \Uptheta_{N} } \right)}}{{\left( {\eta \Uptheta_{N} - \left( {1 - \alpha } \right)\delta \Uptheta_{T} } \right)^{2} }} \le 0. \) (ii) Since \( r_{B}^{*} \ge 0, \) we have \( \left( {\Uptheta_{N} - \alpha \delta \Uptheta_{T} } \right) - C_{A} > 0 \) when G 2 > 0 (brand counter-extension) and \( \left( {\Uptheta_{N} - \alpha \delta \Uptheta_{T} } \right) - C_{A} < 0 \) when G 2 < 0 (brand extension). \( \frac{{\partial r_{B}^{*} }}{\partial \eta } = \frac{{\Uptheta_{N} \left( {\Uptheta_{N} - C_{A} - \alpha \delta \Uptheta_{T} } \right)}}{{\left( {\alpha \delta \Uptheta_{T} - (1 - \eta )\Uptheta_{N} } \right)^{2} }} > 0 \) when G 2 > 0 (brand counter-extension) but \( \frac{{\partial r_{B}^{*} }}{\partial \eta } = \frac{{\Uptheta_{N} \left( {\Uptheta_{N} - C_{A} - \alpha \delta \Uptheta_{T} } \right)}}{{\left( {\alpha \delta \Uptheta_{T} - (1 - \eta )\Uptheta_{N} } \right)^{2} }} < 0 \) when G 2 < 0 (brand extension).

1.8 Proposition 3

Proof

Firm A adopts technology when \( \tilde{C}_{A} \le \hat{C}_{A} . \) Solving Eq. 22, we obtain

$$ \begin{gathered} \Upphi_{B} \left( {\hat{C}_{B} } \right)\left( {\alpha \left( { 1 { - }\delta } \right)\Uptheta_{T} { + }\eta \Uptheta_{N} \, - \, \tilde{C}_{A} } \right) + \left( {1 - \gamma_{B} } \right)\left( {\alpha \left( { 1 { - }\delta } \right)\Uptheta {}_{T} + \Uptheta {}_{N} - \tilde{C}_{A} } \right) \hfill \\ \, > \Upphi_{B} \left( {\hat{C}_{B} } \right)\left( {\alpha \left( { 1 { - }\delta } \right)\Uptheta_{T} } \right) + \left( {1 - \gamma_{B} } \right)\left( {\alpha \Uptheta {}_{T}} \right). \hfill \\ \end{gathered} $$

The equation \( \tilde{C}_{A} \le \left( {\Uptheta {}_{N} - \alpha \delta \Uptheta {}_{T}} \right) - \Upphi_{B} \left( {\hat{C}_{B} } \right)\left( {\left( {1 - \eta } \right)\Uptheta_{N} - \alpha \delta \Uptheta {}_{T}} \right) = \hat{C}_{A} \) is achieved. Similarly, firm B adopts technology when \( \tilde{C}_{B} \le \hat{C}_{B} . \) Solving Eq. 23, we obtain \( \begin{gathered} \Upphi_{A} \left( {\hat{C}_{A} } \right)\left( {\left( {1 - \alpha } \right)\left( { 1- \delta } \right)\Uptheta_{T} { + }\left( {1 - \eta } \right)\Uptheta_{N} \, - \tilde{C}_{B} } \right) + \left( {1 - \Upphi_{A} \left( {\hat{C}_{A} } \right)} \right)\left( {\left( {1 - \alpha } \right)\left( { 1- \delta } \right)\Uptheta {}_{T} + \Uptheta {}_{N} - \tilde{C}_{B} } \right) \hfill \\ > \Upphi_{A} \left( {\hat{C}_{A} } \right)\left( {\left( {1 - \alpha } \right)\left( { 1- \delta } \right)\Uptheta_{T} } \right) + \left( {1 - \Upphi_{A} \left( {\hat{C}_{A} } \right)} \right)\left( {\left( {1 - \alpha } \right)\Uptheta {}_{T}} \right). \hfill \\ \end{gathered} \) We have \( \tilde{C}_{B} \le \left( {\Uptheta {}_{N} - \left( {1 - \alpha } \right)\delta \Uptheta {}_{T}} \right) - \Upphi_{B} \left( {\hat{C}_{B} } \right)\left( {\eta \Uptheta_{N} - \left( {1 - \alpha } \right)\delta \Uptheta {}_{T}} \right) = \hat{C}_{B} . \)

1.9 Corollary 6

Proof

(A). Under the scenario of brand counter-extension (G 2 > 0), from (24) and (25) we have \( \partial \Upphi_{i} \left( {\hat{C}_{i} } \right)/\partial \hat{C}_{j} < 0 \) and \( \partial \Upphi \left( {\hat{C}_{i} } \right)/\partial \Upphi \left( {\hat{C}_{j} } \right) < 0,\quad i \ne j \in \left\{ {A,B} \right\}. \) \( \Upphi_{i} \left( {\hat{C}_{i} } \right) \) will become lower as the mean of technology cost becomes higher. As a result, \( \Upphi_{j} \left( {\hat{C}_{j} } \right) \) and \( \hat{C}_{j} \) becomes higher and \( \hat{C}_{i} \) becomes smaller.

(B). Under the scenario of brand extension (G 2 < 0), we have \( \partial \Upphi_{A} \left( {\hat{C}_{A} } \right)/\partial \hat{C}_{B} < 0 \) and \( \partial \Upphi_{B} \left( {\hat{C}_{B} } \right)/\partial \hat{C}_{A} > 0 \) No matter whether the equilibrium adoption tendency is high or low, a higher disperse degree (variance) of technology cost may increase or decrease the decision threshold for each firm \( \hat{C}_{i} ,\quad i \in \left\{ {A,B} \right\}. \) Consequently, the impact of cost disperse on the adoption tendency is unclear.

1.9.1 Corollary 7

Proof

(A). Under the scenario of brand counter-extension (G 2 > 0), from (24) and (25) we have \( \partial \Upphi_{i} \left( {\hat{C}_{i} } \right)/\partial \hat{C}_{j} < 0\quad {\text{and}}\quad \partial \Upphi \left( {\hat{C}_{i} } \right)/\partial \Upphi \left( {\hat{C}_{j} } \right) < 0\quad i \ne j \in \left\{ {A,B} \right\}. \) When the equilibrium adoption tendency is low (e.g. \( \hat{C}_{i} < \mu_{i} \)), \( \Upphi_{i} \left( {\hat{C}_{i} } \right) \) will become larger as the disperse degree (variance) of technology cost becomes higher. As a result, \( \Upphi_{j} \left( {\hat{C}_{j} } \right) \) and \( \hat{C}_{j} \) becomes lower and \( \hat{C}_{i} \) becomes larger. On the contrary, if the equilibrium adoption tendency is high (e.g. \( \hat{C}_{i} > \mu_{i} \)), \( \Upphi_{i} \left( {\hat{C}_{i} } \right) \) will become smaller as the disperse degree (variance) of technology cost becomes higher. As a result, \( \Upphi_{j} \left( {\hat{C}_{j} } \right) \) and \( \hat{C}_{j} \) becomes larger and \( \hat{C}_{i} \) becomes smaller.

(B). Under the scenario of brand extension (G 2 < 0), we have \( \partial \Upphi_{A} \left( {\hat{C}_{A} } \right)/\partial \hat{C}_{B} < 0 \) and \( \partial \Upphi_{B} \left( {\hat{C}_{B} } \right)/\partial \hat{C}_{A} > 0. \) No matter the equilibrium adoption tendency is high or low, a higher disperse degree (variance) of technology cost may increase or decrease the decision threshold for each firm \( \hat{C}_{i} ,\quad i \in \left\{ {A,B} \right\}. \) Consequently, the impact of cost disperse on the adoption tendency is unclear.

1.10 Corollary 8

Proof

(i) \( \partial \gamma_{A}^{*} /\partial \Uptheta_{N} = \frac{{\eta C_{B} - \left( {1 - \eta } \right)(1 - \alpha )\delta \Uptheta_{T} }}{{\left( {\eta \Uptheta_{N} - \left( {1 - \alpha } \right)\delta \Uptheta_{T} } \right)^{2} }} > 0, \) given \( 0 \le \gamma_{A}^{*} \le 1\quad {\text{and}}\quad G_{1} > 0. \) Since \( \partial \Uptheta_{N} /\partial \sigma_{D} < 0, \) we have \( \partial \gamma_{A}^{*} /\partial \sigma_{D} < 0. \) (ii) Since \( \frac{{\partial r_{B}^{*} }}{{\partial \Uptheta_{N} }} = \frac{{\left( {1 - \eta } \right)C_{A} - \eta \alpha \delta \Uptheta_{T} }}{{\left( {\left( {1 - \eta } \right)\Uptheta_{N} - \alpha \delta \Uptheta_{T} } \right)^{2} }} \), we \( \frac{{\partial r_{B}^{*} }}{{\partial \sigma_{D} }} > 0 \) when G 2 < 0 (brand extension), but \( \frac{{\partial r_{B}^{*} }}{{\partial \sigma_{D} }} < 0 \) when G 2 > 0 (brand counter-extension).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, BH., Li, YM. Analysis of emerging technology adoption for the digital content market. Inf Technol Manag 13, 149–165 (2012). https://doi.org/10.1007/s10799-011-0113-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-011-0113-6

Keywords

Navigation