A statistical framework for EEG channel selection and seizure prediction on mobile | International Journal of Speech Technology Skip to main content

Advertisement

Log in

A statistical framework for EEG channel selection and seizure prediction on mobile

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

This paper presents a patient-specific approach for electroencephalography (EEG) channel selection and seizure prediction based on statistical probability distributions of the EEG signals. This approach has two main phases; training and testing phases. In the training phase, few hours of multi-channel nature for each patient representing normal, pre-ictal, and ictal activities are selected. These hours are segmented into non-overlapping 10-s segments and probability density functions (PDFs) are estimated for the signals, their derivatives, local means, local variances, and medians. These PDFs have multiple bins, which are studied separately as random variables across different segments of the same nature. Depending on the PDFs of these random variables for different signal activities and on predefined prediction and false-alarm probability thresholds, bins are selected from certain channel distributions for seizure prediction. In the testing phase, the selected bins only are used for classification of each signal segment activity into pre-ictal or normal states in the prediction process. In the final prediction step, an equal gain decision fusion process is performed leading to a discrete decision sequence representing the activities of all segments. This sequence is filtered with a moving average filter and compared to a patient-specific prediction threshold. Moreover, we have studied the effect of a lossy compression technique on the accuracy of the proposed algorithm using discrete sine transform (DST) compression. This system can be implemented for communication between headset and mobile to give alerts for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aarabi, A., & He, B. (2012). A rule-based seizure prediction method for focal neocortical epilepsy. Clinical Neurophysiology, 123, 1111–1122.

    Article  Google Scholar 

  • Abd El-Samie, F. E. (2011). Information security for automatic speaker identification (1st ed.). New York: Springer.

    Book  Google Scholar 

  • Aiupkumar, B., Bej, T., & Agarwal, S. (2013) Comparison study of lossless data compression algorithms for text data. IOSR Journal of Computer Engineering, 11, 15–19.

    Google Scholar 

  • Alickovic, E., Kevric, J., & Subasi, A. (2018). Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomedical Signal Processing and Control, 39, 94–102.

    Article  Google Scholar 

  • Berger, H. (1929). Über des Elekrenkephalogramm des Menschen. ArchivfürPsychiatrie und Nervenkrankheiten, 87(1), 527–570.

    Article  Google Scholar 

  • Chiang, C. Y., Chang, N. F., Chen, T. C., Chen, H. H., & Chen, L. G. (2011). Seizure prediction based on classification of EEG synchronization patterns with on-line retraining and post-processing scheme. International Conference of the IEEE EMBS. https://doi.org/10.1109/IEMBS.2011.6091865.

    Google Scholar 

  • Costa, R. P., Oliveira, P., Rodrigues, G., Direito, B., & Dourado, A. (2008). Epileptic seizure classification using neural networks with 14 features. Proceedings of KES. https://doi.org/10.1007/978-3-540-85565-1_35

    Google Scholar 

  • Gadhoumi, K., Lina, J. M., & Gotman, J. (2013). Seizure Prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clinical Neurophysiology, 124, 1745–1754.

    Article  Google Scholar 

  • Hung, S. H., Chao, C. F., Wang, S. K., Lin, B. S., & Lin, C. T. (2010). VLSI implementation for epileptic seizure prediction system based on wavelet and Chaos theory. In Proceedings of the IEEE TENCON.

  • Kannan, R. S., & Eswaran, C. (2007). Lossless compression schemes for EEG signals using neural network predictors. EURASIP Journal on Advances in Signal Processing, 2007, 102.

    Article  MATH  Google Scholar 

  • Kopsinis, Y., & McLaughlin, S. (2009). Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Transactions on Signal Processing, 57(4), 1351–1362.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo, S. M., Lee, B. H., & Tian, W. (2006). Real-time digital signal processing, implementations and applications. New York: Wiley.

    Book  Google Scholar 

  • Li, S., Zhou, W., Yuan, Q., & Liu, Y. (2013). Seizure prediction using spike rate of intracranial EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(6), 880–886.

    Article  Google Scholar 

  • Liu, Y., Li, Y., Lin, H., & Ma, H. (2014). An amplitude-preserved time–frequency peak filtering based on empirical mode decomposition for seismic random noise reduction. IEEE Geoscience and Remote Sensing Letters, 11(5), 896–900.

    Article  Google Scholar 

  • Makeig, S., Kothe, C., Mullen, T., Bigdely-Shamlo, N., Zhang, Z., & Kreutz-Delgado, K. (2012) Evolving signal processing for brain–computer interfaces. Proceedings of the IEEE, 100, 1567–1584.

    Article  Google Scholar 

  • Milić, L. D., Lutovac, M. D., & Ćertić, J. D. (2013). Design of first–order differentiator utilising FIR and IIR sub–filters. International Journal of Reasoning-based Intelligent, Systems, 5(1), 3–11.

    Article  Google Scholar 

  • Miri, M. R., & Nasrabadi, A. M. (2011). A new seizure prediction method based on return map. In Proceedings of the Iranian Conference on BioMedical Engineering, Tehran.

  • Qi, Y., Wang, Y., Zheng, X., Zhang, J., Zhu, J., & Guo, J. (2012). Efficient epileptic seizure detection by a combined IMF-VoE feature. In Proceedings of the International Conference of the IEEE EMBS.

  • Rishita, S., & Shahare, P. (2017). Digital image compression using hybrid scheme using DWT and quantization with DCT for still digital image. International Research Journal of Engineering and Technology. e-ISSN: 2395-0056, p-ISSN: 2395–0072, .

  • Ruchi, G., Kumar, M., & Bathla, R. (2016). Data compression—Lossless and lossy techniques. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 5(7), 120–125.

    Google Scholar 

  • Schelter, B., Drentrup, H. F., Ihle, M., Bonhage, A. S., & Timmer, J. (2011). Seizure prediction in epilepsy: from circadian concepts via probabilistic forecasting to statistical evaluation. In Proceedings of the IEEE International Conference of IEEE EMBS.

  • Scherer, R., Moitzi, G., Daly, I., & Müller-Putz, G. R. (2013). On the use of games for noninvasive EEG-based functional brain mapping. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 155–163.

    Article  Google Scholar 

  • Sriraam, N. (2012). A high-performance lossless compression scheme for EEG signals using wavelet transform and neural network predictors. International Journal of Telemedicine and Applications. https://doi.org/10.1155/2012/302581.

    Google Scholar 

  • Thurman, D. J., Beghi, E., Begley, C. E., Berg, A. T., Buchhalter, J. R., Ding, D., et al. (2011). Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia, 52(Issue Supplement s7), 1–26.

    Google Scholar 

  • Tzallas, A. T., Tsipouras, M. G., Tsalikakis, D. G., Karvounis, E. C., Astrakas, L., Konitsiotis, S., et al. (2012). Automated epileptic seizure detection methods: a review study. In D. Stevanovic (Ed.), Epilepsy—Histological, electroencephalographic and psychological aspects. Rijeka: InTech. ISBN: 978-953-51-0082-9.

  • Tzimourta, K. D., Tzallas, A. T., Giannakeas, N., Astrakas, L. G., Tsalikakis, D. G., & Tsipouras, M. G. (2018). Epileptic seizures classification based on long-term EEG signal wavelet analysis. In: N. Maglaveras, I. Chouvarda, P. de Carvalho (Eds.), Precision medicine powered by pHealth and connected health (pp. 165–169). Singapore: Springer.

    Chapter  Google Scholar 

  • Wang, S., Chaovalitwongse, W. A., & Wong, S. (2010). A novel reinforcement learning framework for online adaptive seizure prediction. In Proceedings of the IEEE international conference on bioinformatics and biomedicine, Hong Kong

  • Wang, S., Chaovalitwongse, W. A., & Wong, S. (2013). Online seizure prediction using an adaptive learning approach. IEEE Transactions on Knowledge and Data Engineering, 25(12), 2854–2866.

    Article  Google Scholar 

  • Williamson, J. R., Bliss, D. W., Browne, D. W., & Narayanan, J. T. (2012). Seizure prediction using EEG spatiotemporal correlation structure. Epilepsy & Behavior, 25, 230–238.

    Article  Google Scholar 

  • Xie, S., & Krishnan, S. (2011). Signal decomposition by multi-scale PCA and its applications to long-term EEG signal classification. In Proceedings of the IEEE international conference on complex medical engineering.

  • Yin, L., Yang, R., Gabbouj, M., & Neuvo, Y. (1996). Weighted median filters: a tutorial. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 43(3), 157–192.

    Article  Google Scholar 

  • Zandi, A. S., Tafreshi, R., Javidan, M., Dumont, G. A. (2010). Predicting temporal lobe epileptic seizures based on zero-crossing interval analysis in scalp EEG. In Proceedings of the 32nd annual international conference of the IEEE EMBS.

  • Zandi, A. S., Tafreshi, R., Javidan, M., & Dumont, G. A. (2013). Predicting epileptic seizures in scalp EEG based on a variational bayesian gaussian mixture model of zero-crossing intervals. IEEE Transactions on Biomedical Engineering, 60(5), 1401–1413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, F., Abd-Elateif El-Gindy, S., El-Dolil, S.M. et al. A statistical framework for EEG channel selection and seizure prediction on mobile. Int J Speech Technol 22, 191–203 (2019). https://doi.org/10.1007/s10772-018-09565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-018-09565-7

Keywords

Navigation