A heuristic algorithm for the strip packing problem | Journal of Heuristics Skip to main content
Log in

A heuristic algorithm for the strip packing problem

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alvarez-Valdes, R., Parreno, F., Tamarit, J.M.: A tabu search algorithm for two-dimensional non-guillotine cutting problems. Eur. J. Oper. Res. 183(3), 1167–1182 (2007)

    Article  MATH  Google Scholar 

  • Alvarez-Valdes, R., Parreno, F., Tamarit, J.M.: Reactive grasp for the strip packing problem. Comput. Oper. Res. 35(4), 1065–1083 (2008)

    Article  MATH  Google Scholar 

  • Alvarez-Valdes, R., Parreno, F., Tamarit, J.M.: A branch and bound algorithm for the strip packing problem. Comput. Oper. Res. 31(4), 431–459 (2009)

    MathSciNet  MATH  Google Scholar 

  • Araya, I., Neveu, B., Riff, M.C.: An efficient hyperheuristic for strip packing problems. In: Adaptive and Multilevel Metaheuristics. Studies in Computational Intelligence, vol. 136, pp. 61–77 (2008)

    Chapter  Google Scholar 

  • Asik, O.B., Ozcan, E.: Bidirectional best-fit heuristic for orthogonal rectangular strip packing problem. Ann. Oper. Res. 172(1), 405–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM J. Comput. 9(4), 846–855 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Beasley, J.E.: Algorithms for unconstrained two-dimensional guillotine cutting. J. Oper. Res. Soc. 36(4), 297–306 (1985a)

    MathSciNet  MATH  Google Scholar 

  • Beasley, J.E.: An exact two-dimensional non-guillotine cutting tree search procedure. Oper. Res. 33(1), 49–64 (1985b)

    Article  MathSciNet  MATH  Google Scholar 

  • Bengtsson, B.E.: Packing rectangular pieces-a heuristic approach. Comput. J. 25(3), 353–357 (1982)

    MathSciNet  Google Scholar 

  • Burke, E.K., Kendall, G., Whitwell, G.: A new placement heuristic for the orthogonal stock-cutting problem. Oper. Res. 52(4), 655–671 (2004)

    Article  MATH  Google Scholar 

  • Burke, E.K., Kendall, G., Whitwell, G.: A simulated annealing enhancement of the best-fit heuristic for the orthogonal stock cutting problem. INFORMS J. Comput. 21(3), 505–516 (2009)

    Article  Google Scholar 

  • Burke, E.K., Hyde, M.R., Kendall, G.: A squeaky wheel optimisation methodology for two-dimensional strip packing. Comput. Oper. Res. 38(7), 1035–1044 (2011)

    Article  MATH  Google Scholar 

  • Chazelle, B.: The bottom left bin packing heuristic: an efficient implementation. IEEE Trans. Comput. 32(8), 697–707 (1983)

    Article  MATH  Google Scholar 

  • Chen, J., Zhu, W.X., Ali, M.M.: A hybrid simulated annealing algorithm for non-slicing VLSI floorplanning. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 41(4), 544–553 (2011)

    Article  Google Scholar 

  • Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting problems. Oper. Res. 25(1), 30–44 (1977)

    Article  MATH  Google Scholar 

  • Coffman, E.G., Garey, D., Tarjan, R.: Performance bounds for level oriented two-dimensional packing algorithms. SIAM J. Comput. 9(1), 808–826 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Cui, Y.: A recursive branch-and-bound algorithm for the rectangular guillotine strip packing problem. Comput. Oper. Res. 35(4), 1281–1291 (2008)

    Article  MATH  Google Scholar 

  • Garrido, P., Riff, M.C.: An evolutionary hyperheuristic to solve strip-packing problems. In: Proceedings of the Intelligent Data Engineering and Automated Learning, pp. 406–415 (2007)

    Chapter  Google Scholar 

  • Heidi, S.: The NFDH Algorithm (2012a). [online Available]. http://users.cs.cf.ac.uk/C.L.Mumford/heidi/NFDHquarters.html

  • Heidi, S.: The FFDH Algorithm (2012b). [online Available]. http://users.cs.cf.ac.uk/C.L.Mumford/heidi/FFDHquarters.html

  • Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuristic algorithm for a 2D packing problem. Eur. J. Oper. Res. 128(1), 34–57 (2001)

    Article  MATH  Google Scholar 

  • Huang, W., Chen, D., Xu, R.: A new heuristic algorithm for rectangle packing. Comput. Oper. Res. 34(11), 3270–3280 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang, S.M., Kao, C.Y., Horng, J.T.: On solving rectangle bin packing problems using genetic algorithms. In: Proceeding of IEEE International Conference on Systems, Man, and Cybernetics, pp. 1583–1590 (1994)

    Google Scholar 

  • Imahori, S., Yagiura, M., Ibaraki, T.: Improved local search algorithms for the rectangle packing problem with general spatial costs. Eur. J. Oper. Res. 167(1), 48–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., Nagamochi, H.: Exact algorithms for the 2-dimensional strip packing problem with and without rotations. Eur. J. Oper. Res. 198(1), 73–83 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Lesh, N., Marks, J., Mahon, A.M., Mitzenmacher, M.: Exhaustive approaches to 2D rectangular perfect packings. Inf. Process. Lett. 90(1), 7–14 (2004)

    Article  MATH  Google Scholar 

  • Martello, S., Monaci, M., Vigo, D.: An exact approach to the strip-packing problem. INFORMS J. Comput. 15(3), 310–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, X., Wong, D.F.: FAST-SP: a fast algorithm for block placement based on sequence pair. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 521–526 (2001)

    Google Scholar 

  • Wei, L., Zhang, D., Chen, Q.: A least wasted first heuristic algorithm for rectangular packing problem. Comput. Oper. Res. 36(5), 1608–1614 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, G.M., Chang, Y.C., Chang, W.Y.: Rectilinear block placement using B*-trees. ACM Trans. Des. Autom. Electron. Syst. 8(2), 188–202 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Y.W. Chang, Prof. Heidi Smith for the help with the B*-tree package, NFDH/FFDH packages, respectively. Special thanks also go to the editors and anonymous reviewers for their valuable comments, which help improving the quality of our manuscript greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxing Zhu.

Additional information

This work was supported in part by the National Science Foundation of China under Grant 61170308, in part by the National Key Basic Research Special Foundation (NKBRSF) of China under Grant 2011CB808000, and in part by the Research Fund for the Doctoral Program (RFDP) of China under Grant 20093514110004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhu, W. & Peng, Z. A heuristic algorithm for the strip packing problem. J Heuristics 18, 677–697 (2012). https://doi.org/10.1007/s10732-012-9203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-012-9203-9

Keywords

Navigation