GMATE: Dynamic Tuning of Parallel Applications in Grid Environment | Journal of Grid Computing Skip to main content
Log in

GMATE: Dynamic Tuning of Parallel Applications in Grid Environment

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Performance is a main issue in parallel application development. Dynamic tuning is a technique that changes certain applications’ parameters on-line to improve their performance adapting the execution to actual conditions. To perform that, it is necessary to collect measurements, analyze application behavior and carry out tuning actions during the application execution. Computational Grids present proclivity for dynamic changes in the environment during the application execution. Therefore, dynamic tuning tools are necessary to reach the expected performance indexes of applications on those environments. This paper addresses the dynamic tuning of parallel/distributed applications on Computational Grids. We analyze Grid environments to determine their characteristics and we present the development of dynamic tuning tool GMATE enabled for such environments. The performance analysis is based on performance models that indicate how to improve the application execution. A particular problem which provokes performance bottlenecks is the load imbalance in Master/Worker applications. A heuristic to dynamically tune granularity of work and number of workers is proposed. Finally, we describe the experimental validation of the performance model and its applicability on a set of real parallel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwala, S., Poellabauer, C., Kong, J., Schwan, K., Wolf, M.: System-level resource monitoring in high-performance computing environments. J. Grid Computing 1(3), 273–289 (2003)

    Article  MATH  Google Scholar 

  2. Allcock, W.E., Bresnahan, J., Kettimuthu, R., Link, J.M.: The globus extensible input/output system (xio): A protocol independent io system for the Grid. In: 19th International Parallel and Distributed Processing Symposium (IPDPS 2005), CD-ROM / Abstracts Proceedings, 4–8 April 2005, Denver, CA, USA. IEEE Computer Society (2005). doi: 10.1109/IPDPS.2005.429

  3. Argollo, E.: Performance Prediction and Tuning in a Multi-Cluster Environment. Ph.D. thesis, Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat Autonoma de Barcelona (2006)

  4. Bayucan, A., Henderson, R., Jones, J., Lesiak, C., Mann, B., Nitzberg, B., Proett, T., Utley, J.: Portable Batch System Administrator Guide. Veridian Systems PBS Products Dept, 2672 Bayshore Parkway, Suite 810 Mountain View, CA 94043 (2000)

  5. Berman, F., Casanova, H., Chien, A., Cooper, K., Dail, H., Dasgupta, A., Deng, W., Dongarra, J., Johnsson, L., Kennedy, K., et al.: New Grid scheduling and rescheduling methods in the grads project. Int. J. Parallel Prog. 33(2–3), 209–229 (2005)

    Article  Google Scholar 

  6. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A., Zagorodnov, D.: Adaptive computing on the Grid using apples. IEEE Trans. Parallel Distrib. Syst. 14(4), 369–382 (2003)

    Article  Google Scholar 

  7. Bharadwaj, V., Ghose, D., Robertazzi, T.G.: Divisible load theory: A new paradigm for load scheduling in distributed systems. Clust. Comput. 6(1), 7–17 (2003)

    Article  Google Scholar 

  8. Buck, B., Hollingsworth, J.K.: An api for runtime code patching. Int. J. High Perform. Comput. Appl. 14(4), 317–329 (2000). doi: 10.1177/109434200001400404

    Article  Google Scholar 

  9. Caymes-Scutari, P., Morajko, A., Margalef, T., Luque, E.: Automatic generation of dynamic tuning techniques. In: Euro-Par, pp. 13–22 (2007)

  10. César, E., Mesa, J.G., Sorribes, J., Luque, E.: Modeling master-worker applications in poetries. In: HIPS, pp. 22–30 (2004)

  11. Costa, G., Jorba, J., Morajko, A., Margalef, T., Luque, E.: Performance models for dynamic tuning of parallel applications on computational Grids. In: CLUSTER, pp. 376–385 (2008)

  12. Costa, G., Morajko, A., Margalef, T., Luque, E.: Automatic tuning in computational Grids. In: Proceedings of the 8th international conference on Applied parallel computing: state of the art in scientific computing, PARA’06, pp. 381–389. Springer-Verlag, Berlin, Heidelberg (2007). URL http://dl.acm.org/citation.cfm?id=775059.1775115

  13. De Sarkar, A., Roy, S., Ghosh, D., Mukhopadhyay, R., Mukherjee, N.: An adaptive execution scheme for achieving guaranteed performance in computational Grids. J. Grid Computing 8(1), 109–131 (2010)

    Article  Google Scholar 

  14. Fitzgerald, S.: Grid information services for distributed resource sharing. In: Proceedings of the 10th IEEE International Symposium on High Performance Distributed Computing, HPDC ’01, p. 181. IEEE Computer Society, Washington, DC, USA (2001). URL http://dl.acm.org/citation.cfm?id=874077.876489

  15. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  16. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15, 200–222 (2001)

    Article  Google Scholar 

  17. Fountain, T.: Parallel Computing: Principles and Practice. Cambridge University Press (2006). URL http://books.google.es/books?id=d8sAGmfTx2gC

  18. Genaud, S., Grunberg, M., Mongenet, C.: Experiments in running a scientific mpi application on Grid’5000. In: 4th High Performance Grid Computing International Workshop, IPDPS Conference Proceedings. IEEE (2007). URL http://icps.u-strasbg.fr/upload/icps-2007-184.pdf

  19. Germain-Renaud, C., Loomis, C., Mościcki, J.T., Texier, R.: Scheduling for responsive Grids. J. Grid Computing 6(1), 15–27 (2008)

    Article  Google Scholar 

  20. Gerndt, M.: Performance Tools for the Grid: State of the Art and Future: Apart White Paper. Research Report Series Lehrstuhl Fur Rechnertechnik und Rechnerorganisation Technische Universitat Munchen Series. Shaker Verlag GmbH (2004). URL http://books.google.es/books?id=k7TSPAAACAAJ

  21. Hablot, L., Gluck, O., Mignot, J.C., Genaud, S., Primet, P.VB.: Comparison and tuning of mpi implementations in a Grid context. In: Proceedings of the 2007 IEEE International Conference on Cluster Computing, CLUSTER ’07, pp. 458–463. IEEE Computer Society, Washington, DC (2007)

  22. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and Engineers, 1st edn. CRC Press, Inc., Boca Raton (2010)

    Book  Google Scholar 

  23. Heymann, E., Senar, M.A., Luque, E., Livny, M.: Adaptive scheduling for master-worker applications on the computational Grid. In: Proceedings of the First IEEE/ACM International Workshop on Grid Computing, Grid ’00, pp. 214–227. Springer-Verlag (2000)

  24. Hollingsworth, J.K., Keleher, P.J.: Prediction and adaptation in active harmony. Clust. Comput. 2(3), 195–205 (1999). doi: 10.1023/A:1019034926845

    Article  Google Scholar 

  25. Javadi, B., Abawajy, J.H.: Performance analysis of heterogeneous multi-cluster systems. In: Proceedings of the 2005 International Conference on Parallel Processing Workshops, ICPPW ’05, pp. 493–500 (2005)

  26. Karonis, N.T., Toonen, B., Foster, I.: Mpich-g2: A Grid-enabled implementation of the message passing interface. J. Parallel Distrib. Comput. 63(5), 551–563 (2003). doi: 10.1016/S0743-7315(03)00002-9

    Article  MATH  Google Scholar 

  27. Keller, J., Schiffmann, W.: Guiding performance tuning for Grid schedules. In: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing, IPDPS ’09, pp 1–6. IEEE Computer Society, Washington, DC (2009). doi: 10.1109/IPDPS.2009.5161169

    Chapter  Google Scholar 

  28. Kertész, A., Kacsuk, P.: Grid interoperability solutions in Grid resource management. IEEE Syst. J. 3(1), 131–141 (2009)

    Article  Google Scholar 

  29. Kondo, D., Chien, A.A., Casanova, H.: Scheduling task parallel applications for rapid turnaround on enterprise desktop Grids. J. Grid Comput 5(4), 379–405 (2007)

    Article  Google Scholar 

  30. MacDougall, M.H.: Simulating computer systems: techniques and tools. MIT Press, Cambridge (1987)

    Google Scholar 

  31. Maghraoui, K., Desell, T.J., Szymanski, B.K., Varela, C.A.: Dynamic malleability in iterative mpi applications. In: 7th International Symposium on Cluster Computing and the Grid, pp. 591–598 (2008)

  32. Miller, B., Cortes, A., Senar, M.A., Livny, M.: The tool d& #230;mon protocol (tdp). In: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, SC ’03, p. 19. ACM, New York (2003)

  33. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The paradyn parallel performance measurement tool. Computer 28(11), 37–46 (1995). doi: 10.1109/2.471178

    Article  Google Scholar 

  34. Morajko, A.: Dynamic Tuning of Parallel/Distributed Applications. Ph.D. thesis, Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat Autonoma de Barcelona (2003)

  35. Morajko, A., Caymes-Scutari, P., Margalef, T., Luque, E.: Automatic tuning of data distribution using factoring in master/worker applications. In: International Conference on Computational Science (2), pp. 132–139 (2005)

  36. Morajko, A., Margalef, T., Luque, E.: Design and implementation of a dynamic tuning environment. J. Parallel Distrib. Comput. 67(4), 474–490 (2007)

    Article  MATH  Google Scholar 

  37. Morajko, A., Morajko, O., Margalef, T., Luque, E.: Mate: Dynamic performance tuning environment. In: Euro-Par, pp. 98–106 (2004)

  38. Ribler, R., Vetter, J., Simitci, H., Simitci, H., Reed, D.A.: Autopilot: Adaptive control of distributed applications. In: Proceedings of the 7th IEEE Symposium on High-Performance Distributed Computing, pp. 172–179 (1998)

  39. Ribler, R.L., Simitci, H., Reed, D.A.: The autopilot performance-directed adaptive control system. Future Gener. Comput. Syst. 18(1), 175–187 (2001). doi: 10.1016/S0167-739X(01)00051-6

    Article  MATH  Google Scholar 

  40. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High Perform. Comput. Appl. 20(2), 287–311 (2006). doi: 10.1177/1094342006064482

    Article  Google Scholar 

  41. Team, G.: The Dynamically-Updated Request Online Coallocator (2007)

  42. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The condor experience. Concurr. Comput. Pract. Experience 17, 323–356 (2005)

    Article  Google Scholar 

  43. Truong, H.L., Fahringer, T.: Scalea-g: A unified monitoring and performance analysis system for the Grid. Sci. Program 12(4), 225–237 (2004) URL http://dl.acm.org/citation.cfm?id=240160.1240161

    Google Scholar 

  44. Vadhiyar, S.S., Dongarra, J.J.: Self adaptivity in Grid computing. Concurr. Comput. Pract. Experience 17(2–4), 235–257 (2005)

    Article  Google Scholar 

  45. Wolski, R.: Dynamically forecasting network performance using the network weather service. Clust. Comput. 1(1), 119–132 (1998). doi: 10.1023/A:1019025230054

    Article  Google Scholar 

  46. Zanikolas, S., Sakellariou, R.: A taxonomy of Grid monitoring systems. Future Gener. Comput. Syst. 21(1), 163–188 (2005). doi: 10.1016/j.future.2004.07.002

    Article  Google Scholar 

  47. Zhang, J., Luo, J.: Scheduling mixed-parallel application onto multicluster Grid with background workloads. In: CSCWD, pp. 429–436 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Sikora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, G., Sikora, A., Jorba, J. et al. GMATE: Dynamic Tuning of Parallel Applications in Grid Environment. J Grid Computing 12, 371–398 (2014). https://doi.org/10.1007/s10723-013-9287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-013-9287-y

Keywords

Navigation