Ranking probability measures by inclusion indices in the case of unknown utility function | Fuzzy Optimization and Decision Making Skip to main content
Log in

Ranking probability measures by inclusion indices in the case of unknown utility function

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

This paper gives a way of analyzing decisions in the case of unknown utility function, or more precisely, when we know only a linear order on an income space. It is shown that in this situation, decisions and corresponding probability measures are partially ordered, and this order is identical to the inclusion relation of comonotone fuzzy sets. It enables us to use inclusion indices of fuzzy sets to analyze the comparability of decisions. To do this, we introduce an inclusion index having properties, which are close to ones of the classical expected utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Actually, this order \(\preceq \) on probability measures coincides with the first order stochastic dominance if \(R\) is a real line.

  2. One can find the proof of this proposition in (Bronevich and Karkishchenko (2002), Theorem 5, p. 192).

  3. We can define the inclusion index for general case as \(\psi (F_1 \subseteq F_2 ) = \int \nolimits _0^1 {w(p)\psi _p (F_1 \subseteq F_2 )dp} \), where \(w\) is a non-negative weight function with \(\int \nolimits _0^1 {w(p)dp} = 1\). Here we assume that \(w(p) = 2p\). This assumption leads to the properties of inclusion index, which are close to ones of the classical expected utility functional.

  4. This theorem follows directly from Property 3 given in the next section.

References

  • Aiche, Fq. (2010). An extension of stochastic dominance to fuzzy random variables. In E. Hüllermeier, R. Kruse, & F. Hoffmann (Eds.), Proceedings of IPMU 2010, LNAI 6178 (pp. 159–168). Berlin-Heidelberg: Springer.

    Google Scholar 

  • Aliev R. A., Pedrycz W., Alizadeh A. V., & O. H. Huseynov. (2013). Fuzzy optimality based decision making under imperfect information without utility. Fuzzy Optimization and Decision Making. Published online: 3 May 2013.

  • Borisov, A. N., & Krumberg, O. (1983). A theory of possibility for decision-making. Fuzzy Sets and Systems, 9, 13–24.

    Article  MATH  Google Scholar 

  • Bronevich, A.G. (2006). The construction of inclusion indices on the set of fuzzy measures and their application in decision-making. In Proceedings of international conference on information processing and management of uncertainty in knowledge-based systems (IPMU-2006), Paris-France (pp. 1761–1767).

  • Bronevich, A. G., & Karkishchenko, A. N. (1994). The family of proximity measures of expert estimates and selection of the optimal measure. Automation and Remote Control, 55, 568–575.

    MATH  MathSciNet  Google Scholar 

  • Bronevich, A. G., & Karkishchenko, A. N. (2002). Statistical classes and fuzzy set theoretical classification of possibility distributions. In C. Bertoluzza, M. A. Gil, & D. A. Ralescu (Eds.), Statistical modelling, analysis and management of fuzzy data (pp. 173–195). Heidelberg: Physica-Verlag.

    Chapter  Google Scholar 

  • Danielson, M., & Ekenberg, L. (1998). A framework for analysing decisions under risk. European Journal of Operational Research, 104, 474–484.

    Article  MATH  Google Scholar 

  • DeGroot, M. (1970). Optimal statistical decisions. New York: McGraw Hill.

    MATH  Google Scholar 

  • Denneberg, D. (1997). Non-additive measure and integral. Dordrecht: Kluwer.

    Google Scholar 

  • Denneberg, D. (2000). Non-additive measure and integral, basic concepts and their role for applications. In M. Grabisch, T. Murofushi, & M. Sugeno (Eds.), Fuzzy measures and integrals—theory and applications. Studies on fuzziness and soft computing (pp. 153–168). Heidelberg: Physica-Verlag.

    Google Scholar 

  • Denneberg, D., & Grabisch, M. (2004). Measure and integral with purely ordinal scales. Journal of Mathematical Psychology, 48, 15–26.

    Article  MathSciNet  Google Scholar 

  • Denoeux, T. (2009). Extending stochastic order to belief functions on the real line. Information Sciences, 179, 1362–1376.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois, D., & Prade, H. (1985). Possibility theory. New York: Plenum press.

    MATH  Google Scholar 

  • Dubois, D., & Prade, H. (1987). The mean value of a fuzzy number. Fuzzy Sets and Systems, 24, 279–300.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois, D., & Prade, H. (2003). Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30, 183–224.

    Article  MathSciNet  Google Scholar 

  • Dubois, D., Prade, H., & Sabbadin, R. (2000). Qualitative decision theory with Sugeno integrals. In M. Grabisch, T. Murofushi, & M. Sugeno (Eds.), Fuzzy measures and integrals—theory and applications (pp. 314–332). Heidelberg: Physica Verlag.

    Google Scholar 

  • Dubois, D., Grabisch, M., Modave, F., & Prade, H. (2000). Relating decision under uncertainty and multicriteria decision making models. International Journal of Intelligent systems, 15, 967–979.

    Article  MATH  Google Scholar 

  • Fishburn, P. C. (1964). Decisions and value theory. New York: Wiley.

    Google Scholar 

  • Giron, F. J., & Rios, S. (1980). Quasi Bayesian behaviour: A more realistic approach to decision-making. In J. M. Bernardo, J. H. Degroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian statistics (pp. 17–28). Valencia: University Press.

    Google Scholar 

  • Gilboa, I., & Schmeidler, D. (1989). Max-min expected utility with non-unique prior. Journal of Mathematical Economics, 18, 141–153.

    Article  MATH  MathSciNet  Google Scholar 

  • Keeney, R. L. (1974). Multiplicative utility functions. Journal of Operations Research, 22, 22–34.

    Article  MATH  MathSciNet  Google Scholar 

  • Litvak, B. G. (1990). Expert information: Methods of extracting and analysis. Moscow: Radio I Svyaz Publ (in Russian).

  • Savage, L. G. (1972). The foundation of statistics (2nd ed.). New York: Dover.

    Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Wang, X., Ruan, D., & Kerre, E. E. (2009). Mathematics of fuzziness—basic issues. Studies in fuzziness and soft computing (Vol. 245). Berlin-Heidelberg: Springer.

    Book  Google Scholar 

  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Zarei, R., Amini, M., Rezaei Roknabadi, A. H., & Akbari, M. G. (2012). Some fuzzy stochastic orderings for fuzzy random variables. Fuzzy Optimization and Decision Making, 11, 209–225.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bronevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronevich, A.G., Rozenberg, I.N. Ranking probability measures by inclusion indices in the case of unknown utility function. Fuzzy Optim Decis Making 13, 49–71 (2014). https://doi.org/10.1007/s10700-013-9169-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-013-9169-6

Keywords

Navigation