Abstract
Although on-demand cloud services are considered to be cost-saving solution for small and medium-sized enterprises, data security and cloud interoperability remain the major barriers for the adoption of cloud services. In addition, the operation of a cloud supply chain consisting of an independent software vendor (ISV) and Software-as-a-service provider may be inefficient without an automatic centralized platform for bundling and delivering ISVs’ applications to subscribers. In fact, these concerns can be resolved if all applications follow the same procedures to work together. Therefore, this study examines the operation of a cloud supply chain in which an intermediary offers a packaging service. The service helps ISVs wrap their applications according to a specific industry standard. This can reduce cost and time needed for deploying and updating applications. By examining an ISV’s channel selection and an intermediary’s pricing offer, our approach helps identify the conditions under which the selling channel is more profitable for the ISV. In addition, the importance of dual channel is highlighted when the intermediary becomes the ISV’s cloud partner. However, the adoption of dual channel does not lead to the highest profit if the quality of the software product is inadequate. We also find that the intermediary has to lower the service fee when there are lots of barriers to cloud adoption, even if the importance of the packaging service increases with the adoption cost. Finally, we find that the R&D for reducing adoption barriers implemented by the ISV may increase or damage the profit of the intermediary, which depends upon the benefits gained from its packaging service.














Similar content being viewed by others
Notes
Parallels’ service provider business has been operated as Odin in 2015. http://www.geekwire.com/2015/parallels-rebrands-its-fast-growing-service-provider-business-as-odin/.
Everyone Benefits When Applications and Services Are APS-Packaged http://www.odin.com/products/automation/aps-cloud-standard/#tab2.
What is Service Automation? http://www.odin.com/products/automation/product-overview/#tab2.
Microsoft Cloud Solution Provider program https://mspartner.microsoft.com/en/us/pages/solutions/cloud-reseller-overview.aspx.
Odin for Microsoft Cloud Solution Provider Program http://www.odin.com/csp/.
What are the historical transit pricing trends? Internet Transit Price Declines http://drpeering.net/FAQ/What-are-the-historical-transit-pricing-trends.php.
For simplifying the computation of proof, we consider that the maximal benefit from the software product is twice as high as the operation cost throughout the study (namely, υ > 2κ). However, the assumption can be relaxed as the fraction of l-type corporations gets higher.
That is, \(\eta_{c} = \alpha \hat{\theta }^{(M)}\).
See the proof of Proposition 4 in the Appendix.
After including the fixed adoption cost in our model, (namely, \(U^{(C)} = \theta (\upsilon - \phi - p_{c} ) - c\)), we have \(\hat{\theta }^{(C)} = {c \mathord{\left/ {\vphantom {c {(\upsilon - \phi - p_{c} )}}} \right. \kern-0pt} {(\upsilon - \phi - p_{c} )}}\) and \(\hat{\theta }^{(M)} = {{(\kappa + p_{s} - c)} \mathord{\Big/ {\vphantom {{(\kappa + p_{s} - c)} {(p_{c} + \phi )}}} \kern-0pt} {(p_{c} + \phi )}}\). Moreover, \(\mu_{c}\) are \(\alpha {{(1 - (\hat{\theta }^{(C)} )^{2} )} \mathord{\left/ {\vphantom {{(1 - (\hat{\theta }^{(C)} )^{2} )} 2}} \right. \kern-0pt} 2}\) and \(\alpha {{((\hat{\theta }^{(M)} )^{2} - (\hat{\theta }^{(C)} )^{2} )} \mathord{\Big/ {\vphantom {{((\hat{\theta }^{(M)} )^{2} - (\hat{\theta }^{(C)} )^{2} )} 2}} \kern-0pt} 2}\) in the pure cloud model and the mixed cloud model, respectively.
Security is just one of several barriers to cloud adoption http://www.pwc.com/gx/en/technology/cloud-computing/charticles/the-big-dilemma.jhtml.
Saugatuck Cloud IT Management Survey Summary Research Results http://i.dell.com/sites/content/business/solutions/engineering-docs/en/Documents/saugatuck-cloud-it-survey.pdf.
Integration remains a barrier to SaaS adoption http://ovum.com/2013/07/31/integration-remains-a-barrier-to-saas-adoption/.
References
Smith, M. A., & Kumar, R. L. (2004). A theory of application service provider (ASP) use from a client perspective. Information & Management, 41(8), 977–1002. doi:10.1016/j.im.2003.08.019.
Katzan, H., Jr., & Dowling, W. A. (2010). Software-As-A-service economics. Review of Business Information Systems (RBIS), 14(1), 27–38.
Parente, S. L., & Prescott, E. C. (1994). Barriers to technology adoption and development. Journal of Political Economy, 102(2), 298–321.
Choudhary, V. (2007). Comparison of software quality under perpetual licensing and software as a service. Journal of Management Information Systems, 24(2), 141–165. doi:10.2753/mis0742-1222240206.
Bala, R. (2012). Pricing online subscription services under competition. Journal of Revenue and Pricing Management, 11(3), 258–273.
Bibi, S., Katsaros, D., & Bozanis, P. (2012). Business application acquisition: On-premise or SaaS-based solutions? IEEE Software, 29(3), 86–93. doi:10.1109/ms.2011.119.
Fan, M., Kumar, S., & Whinston, A. B. (2009). Short-term and long-term competition between providers of shrink-wrap software and software as a service. European Journal of Operational Research, 196(2), 661–671. doi:10.1016/j.ejor.2008.04.023.
Demirkan, H., Cheng, H., & Bandyopadhyay, S. (2010). Coordination strategies in an SaaS supply chain. Journal of Management Information Systems, 26(4), 119–143. doi:10.2753/mis0742-1222260405.
Rohitratana, J., & Altmann, J. (2012). Impact of pricing schemes on a market for Software-as-a-service and perpetual software. Future Generation Computer Systems, 28(8), 1328–1339. doi:10.1016/j.future.2012.03.019.
Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., & Ghalsasi, A. (2011). Cloud computing—The business perspective. Decision Support Systems, 51(1), 176–189. doi:10.1016/j.dss.2010.12.006.
Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58. doi:10.1145/1721654.1721672.
Campbell-Kelly, M. (2009). Historical reflections: The rise, fall, and resurrection of software as a service. Communications of the ACM, 52(5), 28–30. doi:10.1145/1506409.1506419.
Dubey, A., & Wagle, D. (2007). Delivering software as a service. The McKinsey Quarterly, 6, 1–12.
Ji, Y., Kumar, S., Mookerjee, V. S., Sethi, S. P., & Yeh, D. (2011). Optimal enhancement and lifetime of software systems: A control theoretic analysis. Production and Operations Management, 20(6), 889–904. doi:10.1111/j.1937-5956.2010.01215.x.
Lehmann, S., & Buxmann, P. (2009). Pricing strategies of software vendors. Business & Information Systems Engineering, 1(6), 452–462. doi:10.1007/s12599-009-0075-y.
Wu, W.-W., Lan, L. W., & Lee, Y.-T. (2011). Exploring decisive factors affecting an organization’s SaaS adoption: A case study. International Journal of Information Management, 31(6), 556–563. doi:10.1016/j.ijinfomgt.2011.02.007.
Sääksjärvi, M., Lassila, A., & Nordström, H. (2005). Evaluating the software as a service business model: From CPU time-sharing to online innovation sharing. In IADIS International conference e-society (pp. 27–30): Qawra, Malta.
Subashini, S., & Kavitha, V. (2011). A survey on security issues in service delivery models of cloud computing. Journal of Network and Computer Applications, 34(1), 1–11. doi:10.1016/j.jnca.2010.07.006.
Teo, T. S. H., Wong, P. K., & Hui Chia, E. (2000). Information technology (IT) investment and the role of a firm: an exploratory study. International Journal of Information Management, 20(4), 269–286. doi:10.1016/S0268-4012(00)00016-5.
Mitrani, I. (2011). Service center trade-offs between customer impatience and power consumption. Performance Evaluation, 68(11), 1222–1231. doi:10.1016/j.peva.2011.07.017.
Wiboonrat, M. An optimal data center availability and investment trade-offs. In software engineering, artificial intelligence, networking, and parallel/distributed computing, 2008. SNPD’08. Ninth ACIS International Conference on, 2008 (pp. 712–719): IEEE.
Ryan, J. J. C. H., & Ryan, D. J. (2006). Expected benefits of information security investments. Computers & Security, 25(8), 579–588. doi:10.1016/j.cose.2006.08.001.
Huang, C. D., Hu, Q., & Behara, R. S. (2008). An economic analysis of the optimal information security investment in the case of a risk-averse firm. International Journal of Production Economics, 114(2), 793–804. doi:10.1016/j.ijpe.2008.04.002.
Ceran, Y., Dawande, M., Liu, D., & Mookerjee, V. (2014). Optimal software reuse in incremental software development: A transfer pricing approach. Management Science, 60(3), 541–559. doi:10.1287/mnsc.2013.1757.
Dey, D., Fan, M., & Zhang, C. (2010). Design and analysis of contracts for software outsourcing. Information Systems Research, 21(1), 93–114. doi:10.1287/isre.1080.0223.
Marchand, N., & Jacobsen, H. A. (2001). An economic model to study dependencies between independent software vendors and application service providers. Electronic Commerce Research, 1(3), 315–334. doi:10.1023/a:1011502306766.
Chiang, W.-Y. K., Chhajed, D., & Hess, J. D. (2003). Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design. Management Science, 49(1), 1–20.
Dumrongsiri, A., Fan, M., Jain, A., & Moinzadeh, K. (2008). A supply chain model with direct and retail channels. European Journal of Operational Research, 187(3), 691–718. doi:10.1016/j.ejor.2006.05.044.
Feng, Y., Guo, Z., & Chiang, W.-Y. (2009). Optimal digital content distribution strategy in the presence of the consumer-to-consumer channel. Journal of Management Information Systems, 25(4), 241–270. doi:10.2753/mis0742-1222250408.
Fan, M., Kumar, S., & Whinston, A. B. (2007). Selling or advertising: Strategies for providing digital media online. Journal of Management Information Systems, 24(3), 143–166.
Weber, D. M., & Kauffman, R. J. (2011). What drives global ICT adoption? Analysis and research directions. Electronic Commerce Research and Applications, 10(6), 683–701. doi:10.1016/j.elerap.2011.01.001.
Nash, J. (1950). The bargaining problem. Econometrica: Journal of the Econometric Society, 18(2), 155–162.
Eliashberg, J. (1986). Arbitrating a dispute: A decision analytic approach. Management Science, 32(8), 963–974.
Gupta, S., & Livne, Z. A. (1988). Resolving a conflict situation with a reference outcome: An axiomatic model. Management Science, 34(11), 1303–1314.
Li, S. X., & Huang, Z. (1995). Managing buyer-seller system cooperation with quantity discount considerations. Computers & Operations Research, 22(9), 947–958. doi:10.1016/0305-0548(94)00081-I.
Acknowledgments
Jhih-Hua Jhang-Li gratefully acknowledges support from the National Science Council of Taiwan (Republic of China) under grant NSC 101-2410-H-266-002.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
1.1 Proof of Lemma 1
Solving \(U^{(B)} = 0\) yields \(\hat{\theta }^{(B)} = {{(\kappa + p_{s} )} \mathord{\left/ {\vphantom {{(\kappa + p_{s} )} \upsilon }} \right. \kern-0pt} \upsilon }\). Solving \({{\partial \pi_{s}^{(B)} } \mathord{\left/ {\vphantom {{\partial \pi_{s}^{(B)} } {\partial p_{s} }}} \right. \kern-0pt} {\partial p_{s} }} = 0\) yields the optimal solution \(p_{s}^{ \ast }\) because \({{\partial^{2} \pi_{s}^{(B)} } \mathord{\left/ {\vphantom {{\partial^{2} \pi_{s}^{(B)} } {\partial p_{s}^{2} }}} \right. \kern-0pt} {\partial p_{s}^{2} }} < 0\).
1.2 Proof of Lemma 2
By backward induction, we first solve (3.2) and then figure out (3.3) by incorporating the solution of (3.2) into (3.3). In stage two the SaaS provider can raise the usage price \(p_{c}\) until \(U^{(C)} = 0\). Thus, its optimal usage price is given by \(p_{c}^{ \ast } = \upsilon - \phi\) and the aggregated usage is given by \(\mu_{c} = \alpha \int_{0}^{1} {\theta d\theta } = {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}\). In stage one the maximal \(\omega_{s}\) cannot be higher than \(\upsilon - \phi - \beta \kappa\); otherwise, the SaaS provider breaks the deal due to \(\pi_{s}^{(C)} < 0\). Thus, we have \(\omega_{s}^{ \ast } = \upsilon - \phi - \beta \kappa\) so that \(\pi_{s}^{(C)} = \alpha \left( {\frac{\upsilon - \phi - \beta \kappa }{2}} \right) - H\). Moreover, solving \(\pi_{s}^{(C)} - \pi_{s}^{(B)} > 0\) yields the inequality \(\phi < \frac{{(\upsilon + \kappa )^{2} - (1 - \alpha )2\upsilon^{2} - 2(\kappa^{2} + \alpha \beta \kappa \upsilon ) - 4\upsilon H}}{2\alpha \upsilon }\).
1.3 Addendum to double marginalization problem
To incorporate a heterogeneous adoption cost into our model, the payoff of a corporation using the cloud service is rewritten as \(U(\theta ) = \theta (\upsilon - \delta \cdot \phi - p_{c} )\) where \(\delta\) is an index uniformly distributed over [0,1]. As a result, the corporations with the parameters \(\delta \in \left[ {0,\hat{\delta }} \right]\) will adopt the cloud service if \(p_{c} = \upsilon - \hat{\delta } \cdot \phi\). In addition, their overall usage is given by \(\mu_{c} = \alpha \cdot \hat{\delta }\int_{0}^{1} {\theta d\theta } = \left. {\alpha \cdot \hat{\delta }\frac{{\theta^{2} }}{2}} \right|_{0}^{1} = \frac{{\alpha \cdot \hat{\delta }}}{2}\). Accordingly, the SaaS provider’s profit maximization problem is \(\mathop {Max}\limits_{{\hat{\delta }}} \;\pi_{c} = \alpha \cdot \left( {\upsilon - \hat{\delta }\phi - \beta \cdot \kappa - \omega_{s} } \right){{\hat{\delta }} \mathord{\left/ {\vphantom {{\hat{\delta }} 2}} \right. \kern-0pt} 2}\). Solving \({{\partial \pi_{c} } \mathord{\left/ {\vphantom {{\partial \pi_{c} } {\partial \hat{\delta }}}} \right. \kern-0pt} {\partial \hat{\delta }}} = 0\) yields \(\hat{\delta }^{ \ast } = {{(\upsilon - \beta \cdot \kappa - \omega_{s} )} \mathord{\left/ {\vphantom {{(\upsilon - \beta \cdot \kappa - \omega_{s} )} {(2\phi )}}} \right. \kern-0pt} {(2\phi )}}\). As for the ISV, its profit maximization problem is \(\mathop {Max}\limits_{{\omega_{s} }} \;\pi_{s} = \omega_{s} \cdot \mu_{c} - H\). Solving \({{\partial \pi_{s} } \mathord{\left/ {\vphantom {{\partial \pi_{s} } {\partial \omega_{s} }}} \right. \kern-0pt} {\partial \omega_{s} }} = 0\) yields \(\omega_{s}^{ \ast } = {{(\upsilon - \beta \cdot \kappa )} \mathord{\left/ {\vphantom {{(\upsilon - \beta \cdot \kappa )} 2}} \right. \kern-0pt} 2}\); therefore, combining boundary conditions (namely, \(\hat{\delta }^{ \ast } = 1\)), we have
where \(\hat{\upsilon } \equiv \beta \cdot \kappa + 4\phi\). Subsequently, we consider an integrated firm consisting of the ISV and SaaS provider. The integrated firm’s profit maximization problem is \(\pi_{s}^{m} = (p_{c}^{m} - \beta \cdot \kappa )\mu_{c},\) where \(\mu_{c} = \alpha \cdot \delta^{m} \int_{0}^{1} {\theta d\theta }\). By the same approach, we have \(\delta^{m} = {{(\upsilon - \beta \cdot \kappa )} \mathord{\left/ {\vphantom {{(\upsilon - \beta \cdot \kappa )} {(2\phi )}}} \right. \kern-0pt} {(2\phi )}}\) and \(p_{c}^{m} = {{(\upsilon + \beta \cdot \kappa )} \mathord{\left/ {\vphantom {{(\upsilon + \beta \cdot \kappa )} 2}} \right. \kern-0pt} 2}\). Combining boundary conditions, we have
Obviously,\(p_{c}^{m} < p_{c}^{ * }\) when \(\upsilon < \hat{\upsilon }\). Though \(p_{c}^{m} = p_{c}^{ * } = \upsilon - \phi\) when \(\upsilon > \hat{\upsilon }\), the ISV intending to sell its service to all l-type corporations has to charge a moderate \(\omega_{s}^{ * }\) as an incentive to coordinate the SaaS provider. Consequently, the profit of the cloud supply chains is always less than that of the integrated firm when a heterogeneous adoption cost is considered.
1.4 Proof of Lemma 3
Solving \(U^{(B)} = U^{(C)}\) yields \(\hat{\theta }^{(M)} = {{(\kappa + p_{s} )} \mathord{\left/ {\vphantom {{(\kappa + p_{s} )} {(p_{c} + \phi )}}} \right. \kern-0pt} {(p_{c} + \phi )}}\). In stage two, solving \({{\partial \pi_{s}^{(M)} } \mathord{\left/ {\vphantom {{\partial \pi_{s}^{(M)} } {\partial p_{s} }}} \right. \kern-0pt} {\partial p_{s} }} = 0\) and \({{\partial \pi_{c}^{(M)} } \mathord{\left/ {\vphantom {{\partial \pi_{c}^{(M)} } {\partial p_{c} }}} \right. \kern-0pt} {\partial p_{c} }} = 0\) simultaneously yields \(p_{c}^{ * } = \phi + 2\beta \kappa + 2\omega_{s}\) and \(p_{s}^{ * } = \frac{{2\Delta_{1} \left( {2\Delta_{1} \Delta_{2} - \alpha \upsilon \kappa } \right) + \omega_{s} \left( {(4\omega_{s} + 8\Delta_{1} )\Delta_{2} - \alpha \upsilon \kappa } \right)}}{{4\Delta_{1} \left( {2(1 - \alpha )\Delta_{1} + \alpha \upsilon } \right) + \omega_{s} \left( {8\omega_{s} (1 - \alpha ) + 3\alpha \upsilon + 16(1 - \alpha )\Delta_{1} } \right),}}\) where \(\Delta_{1} \equiv \phi + \beta \kappa\) and \(\Delta_{2} \equiv \upsilon - (1 - \alpha )\kappa\). Note that
Because of \(\upsilon > \kappa\), \({{\partial \pi_{s} } \mathord{\left/ {\vphantom {{\partial \pi_{s} } {\partial \omega_{s} }}} \right. \kern-0pt} {\partial \omega_{s} }} > 0\) when \(\omega_{s} = 0\). Therefore, \({{\partial \pi_{s} } \mathord{\left/ {\vphantom {{\partial \pi_{s} } {\partial \omega_{s} }}} \right. \kern-0pt} {\partial \omega_{s} }} > 0\) for each \(\omega_{s}\) as long as \(\upsilon > 2\kappa\) (namely, \(6\upsilon - (1 - {{\upalpha }})10\kappa > 0\)). In fact, the restriction \(\upsilon > 2\kappa\) can be replaced with \(\upsilon > \kappa\) when \(\alpha > {2 \mathord{\left/ {\vphantom {2 5}} \right. \kern-0pt} 5}\). In stage one the ISV can enhance its profit by raising \(\omega_{s}\) due to \({{\partial \pi_{s} } \mathord{\left/ {\vphantom {{\partial \pi_{s} } {\partial \omega_{s} }}} \right. \kern-0pt} {\partial \omega_{s} }} > 0\). \(p_{c}^{ * } \le \upsilon - \phi\) because \(U^{(C)}\) cannot be lower than zero. In case \({{\omega_{s} \ge \upsilon } \mathord{\left/ {\vphantom {{\omega_{s} \ge \upsilon } 2}} \right. \kern-0pt} 2} - \phi - \beta \kappa\), the SaaS provider cannot raise its price anymore so that \(p_{c}^{ * } = \upsilon - \phi\). Notice that the maximal \(\omega_{s}^{ * }\) cannot be higher than \(\upsilon - \phi - \beta \kappa\); otherwise, we have \(\pi_{c}^{(M)} < 0\). As a result, the ISV will extract all of the SaaS provider’s surplus by demanding \(\omega_{s}^{ * } = \upsilon - \phi - \beta \kappa\) and then the SaaS provider has to respond by charging \(p_{c}^{ * } = \upsilon - \phi\). Thus, incorporating \(\omega_{s}^{ * }\) and \(p_{c}^{ * }\) into (3.4), we have \(p_{s}^{ * } = \frac{{\upsilon^{2} - ( 1- \alpha )\upsilon \kappa - \alpha (\phi + \beta \kappa )\kappa }}{(2 - \alpha )\upsilon + \alpha (\phi + \beta \kappa )}\) by solving \({{\partial \pi_{s}^{(M)} } \mathord{\left/ {\vphantom {{\partial \pi_{s}^{(M)} } {\partial p_{s} }}} \right. \kern-0pt} {\partial p_{s} }} = 0\). Based on \(p_{s}^{ * }\) and \(p_{c}^{ * }\), we have \(\hat{\theta }^{(M)} = {{(\kappa + p_{s} )} \mathord{\left/ {\vphantom {{(\kappa + p_{s} )} {(p_{c} + \phi )}}} \right. \kern-0pt} {(p_{c} + \phi )}} = \frac{\kappa + \upsilon }{(2 - \alpha )\upsilon + \alpha (\phi + \beta \kappa )}\). Note that \(\hat{\theta }^{(B)} = {{(\kappa + p_{s} )} \mathord{\left/ {\vphantom {{(\kappa + p_{s} )} \upsilon }} \right. \kern-0pt} \upsilon }\) can be found in Lemma 1. Thus, we have the following equations:
1.5 Proof of Proposition 1
Comparing \(\pi_{s}^{(M)}\) with \(\pi_{s}^{(B)}\), we have \(\pi_{s}^{(M)} > \pi_{s}^{(B)}\) when \(\phi < Q_{2}\), where \(Q_{2} \equiv \frac{{\alpha (\kappa + \upsilon )^{2} (\upsilon - \beta \kappa ) - 4H\upsilon \left( {(2 - {{\alpha }})\upsilon + \alpha \beta \kappa } \right)}}{{\alpha \left( {(\kappa + \upsilon )^{2} + 4H\upsilon } \right)}}\). Likewise, \(\phi > Q_{3}\) may imply \(\pi_{s}^{(M)} > \pi_{s}^{(C)}\), where \(Q_{3} \equiv {{\left( {(1 - \alpha \beta )\kappa - (1 - \alpha )\upsilon } \right)} \mathord{\left/ {\vphantom {{\left( {(1 - \alpha \beta )\kappa - (1 - \alpha )\upsilon } \right)} \alpha }} \right. \kern-0pt} \alpha }\). Solving \(Q_{2} - Q_{3} < 0\) yields the result.
1.6 Proof of Corollary 1
where \(\eta_{c}^{ * } = \alpha \hat{\theta }^{(M)}\) is specified in the proof of Lemma 3.
1.7 Proof of Lemma 4
Note that \(\mu_{c} = {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}\) and \(\eta_{c} = \alpha\) if the ISV intends to adopt the pure cloud model. In addition, \(\phi\) is replaced with \(\sigma \phi\) when the packaging service is introduced into the cloud supply chain. Consequently, the maximal \(\omega_{s}^{ * }\) cannot be higher than \(\upsilon - \sigma \phi - \beta \kappa\); otherwise, we have \(\pi_{c}^{ * } < 0\). Thus, given \(\omega_{s}^{ * } = \upsilon - \sigma \phi - \beta \kappa\), we have \(p_{c}^{ * } = \upsilon - \sigma \phi\) and \(\pi_{s}^{(CI)} = {{\alpha (\upsilon - \sigma \phi - \beta \kappa - f)} \mathord{\left/ {\vphantom {{\alpha (\upsilon - \sigma \phi - \beta \kappa - f)} 2}} \right. \kern-0pt} 2}\). Subsequently, the demands in the mixed cloud model can be specified by \(\eta_{c}^{(MI)} = \alpha \hat{\theta }^{(MI)}\) and \(\eta_{s}^{(MI)} = \alpha (1 - \hat{\theta }^{(MI)} ) + (1 - \alpha )(1 - \hat{\theta }^{(BI)} )\), where \(\hat{\theta }^{(MI)} = \frac{{\kappa + p_{s} }}{{p_{c} + \sigma \phi }}\) is derived by solving \(U^{(B)} = U^{(C)}\) and \(\hat{\theta }^{(BI)}\) is derived by solving \(U^{(B)} = 0\). The next step is to solve \({{\partial \pi_{s}^{(MI)} } \mathord{\left/ {\vphantom {{\partial \pi_{s}^{(MI)} } {\partial p_{s} }}} \right. \kern-0pt} {\partial p_{s} }} = 0\) and \({{\partial \pi_{c}^{(MI)} } \mathord{\left/ {\vphantom {{\partial \pi_{c}^{(MI)} } {\partial p_{c} }}} \right. \kern-0pt} {\partial p_{c} }} = 0\) simultaneously to yield \(p_{s}^{ * }\) as well as \(p_{c}^{ * }\) and then consider \({{\partial \pi_{s}^{(MI)} (p_{s}^{ * } ,p_{c}^{ * } )} \mathord{\left/ {\vphantom {{\partial \pi_{s}^{(MI)} (p_{s}^{ * } ,p_{c}^{ * } )} {\partial \omega_{s} }}} \right. \kern-0pt} {\partial \omega_{s} }}\). Just like Lemma 3, \({{\partial \pi_{s}^{(MI)} } \mathord{\left/ {\vphantom {{\partial \pi_{s}^{(MI)} } {\partial \omega_{s} }}} \right. \kern-0pt} {\partial \omega_{s} }} > 0\) for each \(\omega_{s}\), which can be examined by the same approach. Therefore, we incorporate \(\omega_{s}^{ * } = \upsilon - \sigma \phi - \beta \kappa\) and \(p_{c}^{ * } = \upsilon - \sigma \phi\) into \(\pi_{s}^{(MI)}\), and then solve \(\partial {{\pi_{s}^{(MI)} } \mathord{\left/ {\vphantom {{\pi_{s}^{(MI)} } {\partial p_{s} = 0}}} \right. \kern-0pt} {\partial p_{s} = 0}}\) to yield \(p_{s}^{ * } = \frac{{\upsilon^{2} - ( 1- \alpha )\upsilon \kappa - \alpha (\sigma \phi + \beta \kappa )\kappa - \alpha \kappa f}}{(2 - \alpha )\upsilon + \alpha (\sigma \phi + \beta \kappa + f)}\). Subsequently, we can find the f satisfying \(\pi_{s}^{(MI)} - \pi_{s}^{(CI)} = 0\), where \(\pi_{s}^{(MI)} = \frac{1}{2}\left( {\frac{{(\upsilon + \kappa )^{2} - 2\left( {\alpha f + (2 - \alpha )\upsilon + \alpha (\beta \kappa + \sigma \phi )} \right)\kappa }}{{(2 - \alpha )\upsilon + \alpha \left( {\sigma \phi + \beta \kappa + f} \right)}}} \right)\).
1.8 Proof of Lemma 5
In this lemma and subsequent lemmas, we need to ensure that the ISV won’t reject this offer and the chosen f is the largest one and best for the intermediary. In addition, we need to examine both the mixed cloud model and the pure cloud model because the ISV accepting the contract may choose one of them as its business model.
1.8.1 Case 1: mixed cloud model
Note that \(J\) is the intermediary’s optimal service fee in the mixed cloud model without any constraints. Solving \(\pi_{s}^{(MI)} = \pi_{s}^{(C)}\) yields \(f^{(MI)} = \frac{{(\upsilon + \kappa )^{2} }}{{\alpha \left( {\alpha (\upsilon - \phi - \beta \kappa ) + 2(\kappa - H)} \right)}} - J\), which is less than \(J\) due to \(\phi < Q_{1}\).
1.8.2 Case 2: pure cloud model
Solving \(\pi_{s}^{(CI)} = \pi_{s}^{(C)}\) yields \(f^{(CI)} = ( 1- \sigma )\phi { + }{{ 2H} \mathord{\left/ {\vphantom {{ 2H} \alpha }} \right. \kern-0pt} \alpha }\), which is the maximal service fee the intermediary may charge in the pure cloud model.
Results
Once \(f^{ * } = \frac{(1 - \alpha \beta )\kappa - \alpha \sigma \phi - (1 - \alpha )\upsilon }{\alpha }\) holds, we have \(\pi_{s}^{(C)} = \pi_{s}^{(MI)} = \pi_{s}^{(CI)}\), which is a degenerated case of the mixed cloud model. Thus, solving \(f^{(MI)} = \frac{(1 - \alpha \beta )\kappa - \alpha \sigma \phi - (1 - \alpha )\upsilon }{\alpha }\) yields \(\hat{\phi } = \frac{(1 - \alpha \beta )\kappa - 2H - ( 1- \alpha )\upsilon }{\alpha }\). Note that \(f^{ * }\) is a continuous function when \(\phi < Min\{ Q_{1} ,Q_{3} \}\) because \(f^{(MI)} = f^{(CI)}\) when \(\phi = \hat{\phi }\).
1.9 Proof of Lemma 6
1.9.1 Case 1: mixed cloud model
Note that \(J\) is the intermediary’s optimal service fee in the mixed cloud model without any constraints. Solving \(\pi_{s}^{(MI)} = \pi_{s}^{(M)}\) yields \(f^{(MI)} = \frac{{(\varOmega - \alpha J)(\kappa + \upsilon )^{2} + 2\alpha H\varOmega J}}{{\alpha \left( {(\kappa + \upsilon )^{2} - 2H\varOmega } \right)}}\), which is less than \(J\) due to \(\phi < Q_{2}\).
1.9.2 Case 2: pure cloud model
Solving \(\pi_{s}^{(CI)} = \pi_{s}^{(M)}\) yields \(f^{(CI)} = \upsilon - \sigma \phi - \beta \kappa - \frac{2}{\alpha }\left( {\frac{{(\kappa + \upsilon )^{2} - 2\kappa \varOmega }}{2\varOmega } - H} \right)\), which is the maximal service fee the intermediary may charge in the business model.
Results
Solving \(f^{(MI)} < \frac{(1 - \alpha \beta )\kappa - \alpha \sigma \phi - (1 - \alpha )\upsilon }{\alpha }\) yields \(\hat{H} < \frac{{(\kappa + \upsilon ) \cdot \left( {(1 - \alpha \beta )\kappa - (1 - \alpha )\upsilon - \alpha \phi } \right)}}{2\varOmega }\). However, \(Q_{3} < \phi\) may imply \((1 - \alpha \beta )\kappa - (1 - \alpha )\upsilon < \alpha \phi\). Therefore, \(\hat{H} < 0\) is a contradiction so that the ISV always adopts the mixed cloud model.
1.10 Proof of Lemma 7
1.10.1 Case 1: mixed cloud model
Note that \(J\) is the intermediary’s optimal service fee without any constraints. Solving \(\pi_{s}^{(MI)} = \pi_{s}^{(B)}\) yields \(f^{(MI)} = \upsilon - \sigma \phi - \beta \kappa\), which is less than \(J\).
1.10.2 Case 2: pure cloud model
Solving \(\pi_{s}^{(CI)} = \pi_{s}^{(B)}\) yields \(f^{(CI)} = \frac{{2\alpha \upsilon (\upsilon - \sigma \phi - \beta \kappa ) - (\upsilon - \kappa )^{2} }}{2\alpha \upsilon }\), which is the maximal service fee the intermediary may charge in the business model.
Results
According to Lemma 4, the ISV always adopts the mixed cloud model because \(f^{(CI)} > \frac{(1 - \alpha \beta )\kappa - \alpha \sigma \phi - (1 - \alpha )\upsilon }{\alpha }\). However, the ISV still keeps the baseline model when \(\phi \ge {{(\upsilon - \beta \kappa )} \mathord{\left/ {\vphantom {{(\upsilon - \beta \kappa )} \sigma }} \right. \kern-0pt} \sigma }\) because cloud sales cannot increase revenue for the ISV partnering with the intermediary.
1.11 Proof of Proposition 2
Combining Lemma 5-7 leads to the result.
1.12 Proof of Proposition 3
-
(1)
In case of \(\phi < Min\{ Q_{1} ,Q_{3} \}\)
Note that \(\phi > \hat{\phi } \Leftrightarrow (\upsilon + \kappa ) - \left( {\alpha \cdot (\upsilon - \phi - \beta \kappa ) + 2\kappa - 2H} \right) > 0\). Thus, we have
$$\frac{{\partial f^{ * } }}{\partial \phi } = \left\{ {\begin{array}{*{20}l} {\frac{{(\upsilon + \kappa )^{2} - \sigma \cdot \left( {\alpha \cdot (\upsilon - \phi - \beta \kappa ) + 2\kappa - 2H} \right)^{2} }}{{\left( {\alpha \cdot (\upsilon - \phi - \beta \kappa ) + 2\kappa - 2H} \right)^{2} }} > 0,} & {\quad \phi > \hat{\phi }} \\ {1 - \sigma > 0,} & {\quad \phi < \hat{\phi }} \\ \end{array} } \right.$$ -
(2)
In case of \(Q_{3} < \phi < Q_{2}\)
Note that \(f^{ * } = \frac{{(\varOmega - \alpha J)(\kappa + \upsilon )^{2} + 2\alpha H\varOmega J}}{{\alpha \left( {(\kappa + \upsilon )^{2} - 2H\varOmega } \right)}} > 0 \Rightarrow (\kappa + \upsilon )^{2} > 2H\varOmega\). Thus, we have
$$\frac{{\partial f^{ * } }}{\partial \phi } = \frac{{4H\varOmega \sigma \left( {(\upsilon + \kappa )^{2} - H\varOmega } \right) + (1 - \sigma )(\upsilon + \kappa )^{4} }}{{\left( {(\upsilon + \kappa )^{2} - 2H\varOmega } \right)^{2} }} > 0$$ -
(3)
In case of \(\phi > Max\{ Q_{1} ,Q_{2} \}\)
$${{\partial f^{ * } } \mathord{\left/ {\vphantom {{\partial f^{ * } } {\partial \phi }}} \right. \kern-0pt} {\partial \phi }} = - \sigma < 0$$
1.13 Proof of Proposition 4
-
(1)
In case of \(\phi < Min\{ Q_{1} ,Q_{3} \}\)
$$\frac{{\partial \pi_{I}^{ * } }}{\partial \phi } = \left\{ {\begin{array}{*{20}c} {\varPsi ,} & {\quad \phi > \hat{\phi }} \\ {{{\alpha ( 1- \sigma )} \mathord{\left/ {\vphantom {{\alpha ( 1- \sigma )} 2}} \right. \kern-0pt} 2} > 0,} & {\quad \phi < \hat{\phi }} \\ \end{array} }, \right.$$where
$$\varPsi \equiv - \frac{{\alpha \cdot \left\{ \begin{aligned} (H - \kappa )8\sigma \alpha \phi - 2(2 + \sigma )\alpha^{2} \upsilon \beta \kappa + 2\alpha^{2} \phi (\beta \kappa - \upsilon )(1 + 2\sigma ) + 4(\sigma + \beta )\upsilon \alpha \kappa + \sigma \alpha^{2} \upsilon^{2} \hfill \\ - 4\upsilon (1 + \sigma )(\alpha H + \kappa ) + (4\upsilon + 3\sigma \alpha \phi )\alpha \phi + \left( {(2 + \sigma )\alpha \beta - 4(1 + \sigma )} \right)\alpha \beta \kappa^{2} + 2(\alpha - 2)\alpha \upsilon^{2} \hfill \\ + 8(\upsilon - \sigma \kappa )H + (\upsilon - \kappa )^{2} + 4\sigma (\kappa^{2} + H^{2} ) + 4\alpha \beta \kappa H(1 + \sigma ) + 4(\alpha + \sigma ) \cdot \kappa \upsilon \hfill \\ \end{aligned} \right\}}}{{2(\upsilon + \kappa )^{2} }}$$Note that \(\phi < Q_{3} \Leftrightarrow \alpha \phi < (1 - \alpha \beta )\kappa - (1 - \alpha )\upsilon\). Thus, we have
$$\frac{{\partial \pi_{I}^{(MI)} }}{\partial \phi } = \left\{ {\begin{array}{*{20}c} {\alpha \cdot \frac{(3 - 2\alpha )\upsilon + 2\alpha \beta \kappa - \kappa }{2(\upsilon + \kappa )} > 0,} & {if\;\sigma = 0\;and\;\phi = \hat{\phi }} \\ {2\alpha \cdot \frac{(1 - \alpha )\upsilon - (1 - \alpha \beta )\kappa + \alpha \phi }{2(\upsilon + \kappa )} < 0\;,} & {if\;\sigma = 1\;and\;\phi = \hat{\phi }} \\ \end{array} } \right.$$That is, the sign of \({{\partial \pi_{I}^{ * } } \mathord{\left/ {\vphantom {{\partial \pi_{I}^{ * } } {\partial \phi }}} \right. \kern-0pt} {\partial \phi }}\) is uncertain when \(\phi < Min\{ Q_{1} ,Q_{3} \}\) and \(\phi > \hat{\phi }\).
-
(2)
In case of \(Q_{3} < \phi < Q_{2}\)
The explicit value for \({{\partial \pi_{I}^{(MI)} } \mathord{\left/ {\vphantom {{\partial \pi_{I}^{(MI)} } {\partial \phi }}} \right. \kern-0pt} {\partial \phi }}\) is not reported because this involves a long expression, but this solution can be simplified when the parameter \(\sigma\) is assigned as 0 or 1. Note that \(f^{ * } > 0\) may imply \((\kappa + \upsilon )^{2} > 2H\varOmega\). Thus, we have
$$\begin{aligned} \phi < Q_{2} \Leftrightarrow \alpha (\kappa + \upsilon )^{2} (\upsilon - \beta \kappa ) - 4H\upsilon \left( {(2 - \alpha )\upsilon + \alpha \beta \kappa } \right) > \phi \alpha \left( {(\kappa + \upsilon )^{2} + 4H\upsilon } \right) \Leftrightarrow \hfill \\ (\kappa + \upsilon )^{2} \left( {(2 - \alpha ) \cdot \upsilon - \alpha \phi + \alpha \beta \kappa } \right) - 4H\left( {(2 - \alpha )\upsilon + \alpha \beta \kappa + \phi \alpha } \right)\left( {(2 - \alpha ) \cdot \upsilon + \alpha \beta \kappa } \right) > \hfill \\ 2\left( {(\kappa + \upsilon )^{2} - 2H\varOmega } \right)((1 - \alpha ) \cdot \upsilon + \alpha \beta \kappa ) > 0 \hfill \\ \end{aligned}$$Consequently, \({{\partial \pi_{I}^{(MI)} } \mathord{\left/ {\vphantom {{\partial \pi_{I}^{(MI)} } {\partial \phi }}} \right. \kern-0pt} {\partial \phi }} = - {{(2\alpha H^{2} )} \mathord{\left/ {\vphantom {{(2\alpha H^{2} )} {(\upsilon + \kappa )^{2} }}} \right. \kern-0pt} {(\upsilon + \kappa )^{2} }} < 0\) if \(\sigma = 1\);
$$\frac{{\partial \pi_{I}^{(MI)} }}{\partial \phi } = \alpha \cdot \frac{{(\upsilon + \kappa )^{2} \cdot ((2 - \alpha ) \cdot \upsilon - \alpha \cdot \phi + \alpha \beta \kappa ) - 4H\left( {(2 - \alpha ) \cdot \upsilon + \alpha \phi + \alpha \beta \kappa } \right) \cdot \left( {(2 - \alpha ) \cdot \upsilon + \alpha \beta \kappa } \right)}}{{2\left( {(2 - \alpha ) \cdot \upsilon + \alpha \phi + \alpha \beta \kappa } \right)^{3} }} > 0$$if \(\sigma = 0\). That is, the sign of \({{\partial \pi_{I}^{ * } } \mathord{\left/ {\vphantom {{\partial \pi_{I}^{ * } } {\partial \phi }}} \right. \kern-0pt} {\partial \phi }}\) is uncertain when \(Q_{3} < \phi < Q_{2}\), but we can show how it links to the value of \(\sigma\).
-
(3)
In case of \(\phi > Max\{ Q_{1} ,Q_{2} \}\)
We have \({{\partial \pi_{I}^{(MI)} } \mathord{\left/ {\vphantom {{\partial \pi_{I}^{(MI)} } {\partial \phi }}} \right. \kern-0pt} {\partial \phi }} = {{ - \sigma \alpha (\kappa + \upsilon )^{2} } \mathord{\left/ {\vphantom {{ - \sigma \alpha (\kappa + \upsilon )^{2} } {(8\upsilon^{2} )}}} \right. \kern-0pt} {(8\upsilon^{2} )}} < 0\).
Rights and permissions
About this article
Cite this article
Jhang-Li, JH., Chang, CW. Analyzing the operation of cloud supply chain: adoption barriers and business model. Electron Commer Res 17, 627–660 (2017). https://doi.org/10.1007/s10660-016-9238-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10660-016-9238-3