Combinational constructions of splitting authentication codes with perfect secrecy | Designs, Codes and Cryptography Skip to main content
Log in

Combinational constructions of splitting authentication codes with perfect secrecy

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Splitting authentication codes were first introduced by Simmons in 1982. Ogata et al. introduced \((v,u\times c,1)\)-splitting balanced incomplete block designs in 2006 in order to construct twofold optimal c-splitting authentication codes. In 2020, Paterson and Stinson showed that there exists an authentication code with perfect secrecy for u uniformly distributed source states that is \(\epsilon \)-secure against message-substitution and key-substitution attacks if and only if there exists an \(\epsilon \)-secure robust (2, 2)-threshold scheme for u uniformly distributed secrets, and they used an equitably ordered \((v, u \times c, 1)\)-splitting balanced incomplete block design (briefly a \((v, u \times c, 1)\)-ESBIBD) to construct a (1/cu)-secure robust (2, 2)-threshold scheme for u equiprobable secrets. Note that \(v\equiv 1\ (\text{ mod }\ u(u-1)c)\) and \(v(v-1) \equiv 0\ (\text{ mod }\ u(u-1)c^2)\) if there is a \((v, u\times c, 1)\)-ESBIBD. In order to consider other orders v, we generalize the concept of a \((v, u\times c, 1)\)-ESBIBD to an equitably ordered \((v, u\times c, 1)\)-splitting packing design (briefly a \((v, u \times c, 1)\)-ESPD), which can also be used to construct a (1/cu)-secure robust (2, 2)-threshold scheme for u equiprobable secrets. In this paper, we study combinatorial constructions of \((v, u\times c, 1)\)-ESPDs and determine the existence of an optimal \((v,u\times c,1)\)-ESPD for \((u,c)\in \{ (2,k) :\ k\ \text{ is } \text{ a } \text{ positive } \text{ integer } \}\cup \{(3,1),(4,1),(3,2)\}\). Consequently, we obtain some new infinite classes of authentication codes with perfect secrecy and (1/cu)-secure robust (2, 2)-threshold schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Blundo C., De Santis A., Kurosawa K., Ogata W.: On a fallacious bound for authentication codes. J. Cryptol. 12(3), 155–159 (1999).

    Article  MathSciNet  Google Scholar 

  2. Brickell E.F., Wei V.K.: Optical orthogonal codes and cyclic block designs. Congr. Numer. 58, 175–192 (1987).

    MathSciNet  MATH  Google Scholar 

  3. Chung F.P.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inf. Theory 35(3), 595–604 (1989).

    Article  MathSciNet  Google Scholar 

  4. Colbourn C.J., Hoffman D.G., Rees R.: A new class of group divisible design with block size three. J. Comb. Theory Ser A 59(1), 73–89 (1992).

    Article  MathSciNet  Google Scholar 

  5. De Soete M.: New bounds and constructions for authentication/secrecy codes with splitting. J. Cryptol. 3, 173–186 (1991).

    Article  MathSciNet  Google Scholar 

  6. Du B.: Existence of optimal strong partially balanced design. Appl. Math. J. Chin. Univ. Ser. B 22(2), 169–173 (2007).

    Article  MathSciNet  Google Scholar 

  7. Ge G.: Group Divisible Designs. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 255–260. CRC Press, Boca Raton (2007).

    Google Scholar 

  8. Liang M., Du B.: Existence of optimal restricted strong partially balanced designs. Util. Math. 89, 15–31 (2012).

    MathSciNet  MATH  Google Scholar 

  9. Liang M., Ji L., Zhang J.: Some new classes of \(2\)-fold optimal or perfect splitting authentication codes. Cryptogr. Commun. 9(3), 407–430 (2017).

    Article  MathSciNet  Google Scholar 

  10. Ogata W., Kurosawa K., Stinson D.R., Saido H.: New combinatorial designs and their applications to authentication codes and secret sharing schemes. Discret. Math. 279(1–3), 383–405 (2004).

    Article  MathSciNet  Google Scholar 

  11. Paterson M.B., Stinson D.R.: On the equivalence of authentication codes and robust (2,2)-threshold schemes. J. Math. Cryptol. 15(1), 179–196 (2020).

    Article  MathSciNet  Google Scholar 

  12. Paterson M.B., Stinson D.R.: Splitting authentication codes with perfect secrecy: new results, constructions and connections with algebraic manipulation detection codes. Adv. Math. Commun. (2021). https://doi.org/10.3934/amc.2021054.

    Article  Google Scholar 

  13. Pei D., Li Y., Wang Y., Safavi-Naini R.: Characterization of optimal authentication codes with arbitration. Lecture Notes in Computer Science, vol. 1587, pp. 303–313. Springer, Berlin (1999).

  14. Rolf S.: Rees: two new direct product-type constructions for resolvable group-divisible designs. J. Comb. Des. 1(1), 15–26 (1993).

  15. Simmons G.J.: A game theory model of digital message authentication. Congr. Numer. 34, 413–424 (1982).

    MATH  Google Scholar 

  16. Simmons G.J.: Message authcntucation: a game on hypergraphs. Congr. Numer. 45, 161–192 (1984).

    MathSciNet  Google Scholar 

  17. Simmons G.J.: Authentucation theorey/coding theory. In: Blakley G.R., Chaum D. (eds.) Advances in Cryptology-CRYPTO 1984, vol. 196, pp. 411–431. Lecture Notes in Computer Science. Springer, Berlin (1985).

  18. Simmons G.J.: A survey of information authentication. In: Simmons G.J. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 379–419. IEEE Press, Piscataway (1992).

    MATH  Google Scholar 

  19. Stinson D.R.: The combinatorics of authentication and secrecy codes. J. Cryptol. 2(1), 23–49 (1990).

    Article  MathSciNet  Google Scholar 

  20. Stinson D.R., Wei R., Yin J.: Packings. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 550–556. CRC Press, Boca Raton (2007).

    Google Scholar 

  21. Wang J.: A new class of optimal \(3\)-splitting authentication codes. Des. Codes Cryptogr. 38(3), 373–381 (2006).

    Article  MathSciNet  Google Scholar 

  22. Wei H., Ge G.: Group divisible designs with block size four and group type \(g^um^1\) for \(g\equiv 0\) mod \(6\). J. Comb. Des. 22(1), 26–52 (2014).

    Article  Google Scholar 

  23. Wilson R.M.: An existence theory for pairwise balanced designs II. The structure of PBD closed sets and the existence conjectures. J. Comb. Theory A 13, 246–273 (1972).

    Article  MathSciNet  Google Scholar 

  24. Wilson R.M.: Constructions and uses of pairwise balanced designs in Hall M., Van Lint J H (eds.). Combinatorics, Part 1. Mathematisch Centrun Tracts. vol. 55, pp. 18–41. Amsterdam:[s.n.] (1974).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Liang.

Additional information

Communicated by M. Paterson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research is supported by NSFC Grant 11871363 (L. Ji)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Liang, M. & Wang, Y. Combinational constructions of splitting authentication codes with perfect secrecy. Des. Codes Cryptogr. 90, 2491–2515 (2022). https://doi.org/10.1007/s10623-022-01092-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01092-6

Keywords

Mathematics Subject Classification