On permutation quadrinomials with boomerang uniformity 4 and the best-known nonlinearity | Designs, Codes and Cryptography Skip to main content
Log in

On permutation quadrinomials with boomerang uniformity 4 and the best-known nonlinearity

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Motivated by recent works on the butterfly structure, particularly by its generalization introduced by Canteaut et al. (IEEE Trans Inf Theory 63(11):7575–7591, 2017), we first push further the study of permutation polynomials over binary finite fields by completely characterizing those permutations\(f_{\underline{\epsilon }}\) defined over the finite field \({\mathbb F}_{Q^2}\) (of order \(Q^2\)) having the following shape:

$$\begin{aligned} f_{\underline{\epsilon }}(X):=\epsilon _1\overline{X}^{q+1} +\epsilon _2\overline{X}^qX+\epsilon _3\overline{X}X^q+\epsilon _4X^{q+1} \end{aligned}$$

where \(q=2^k\), \(Q=2^m\), m is odd, \(\mathrm {gcd}(m,k)=1\), \(\overline{X}=X^Q\) and \(\underline{\epsilon }=(\epsilon _1, \epsilon _2, \epsilon _3, \epsilon _4)\in {\mathbb F}_{Q}^4\). We shall provide an approach to handle the bijectivity of \(f_{\underline{\epsilon }}\) for any \(k\ge 1\). Notably, we show that the problem of finding conditions for bijectivity of the quadrinomial \(f_{\underline{\epsilon }}\) is closely related to the study of the famous equation \(X^{q+1}+X+a=0\) (*). We then reduce the initial problem into the problem of finding conditions for which an equation of the form (*) has a unique solution in \({\mathbb F}_{Q}\) for every \(a\in {\mathbb F}_{Q}\). In addition, as a crucial direct consequence our result, we prove the validity of the conjecture (Conjecture 19) proposed by Li et al. (Des Codes Cryptogr 89:737–761, 2021). We emphasize that our positive answer completely characterizes permutations with boomerang uniformity 4 from the butterfly structure, which leads to the view of the quadrinomial \(f_{\underline{\epsilon }}\) as excellent candidates to design block ciphers in symmetric cryptography. Despite a lot of attention regarding the considered conjecture, it remains unsolved on its whole when the coefficients lie in \({\mathbb F}_{Q}\). However, this article is the first which propose an approach that solves the enter conjecture by handling both sides of it involving equivalence simultaneously. We believe that our novel approach and its strength could benefit from proving the bijectivity of other families of polynomials over finite fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar-On A., Dunkelman O., Keller N., Weizman A.: DLCT: A new tool for differential-linear cryptanalysis. In: Ishai Y., Rijmen V. (eds.) EUROCRYPT 2019, LNCS 11476, pp. 313–342 (2019).

  2. Bartoli D.: On a conjecture about a class of permutation trinomials. Finite Fields Appl. 52, 30–50 (2018).

    Article  MathSciNet  Google Scholar 

  3. Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991).

    Article  MathSciNet  Google Scholar 

  4. Bluher A.W.: On \(x^{q+1} + ax + b\). Finite Fields Appl. 10(3), 285–305 (2004).

    Article  MathSciNet  Google Scholar 

  5. Boura C., Canteaut A.: On the boomerang uniformity of cryptographic Sboxes. IACR Trans. Symmetric Cryptol. 2018(3), 290–310 (2018).

    Article  Google Scholar 

  6. Bracken C., Leander G.: A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields Appl. 16(4), 231–242 (2010).

    Article  MathSciNet  Google Scholar 

  7. Bracken C., Tan C.H., Tan Y.: Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields Appl. 18(3), 537–546 (2012).

    Article  MathSciNet  Google Scholar 

  8. Canteaut A., Duval S., Perrin L.: A generalization of Dillon’s APN permutation with the best known differential and nonlinear properties for all fields of size \(2^{4k+2}\). IEEE Trans. Inf. Theory 63(11), 7575–7591 (2017).

    Article  Google Scholar 

  9. Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021).

    MATH  Google Scholar 

  10. Cid C., Huang T., Peyrin T., Sasaki Y., Song L.: Boomerang connectivity table: a new cryptanalysis tool. EUROCRYPT 2018, 683–714 (2018).

    MathSciNet  MATH  Google Scholar 

  11. Cohen S.D., Matthews R.W.: A class of exceptional polynomials. Trans. Am. Math. Soc. 345, 897–909 (1994).

    Article  MathSciNet  Google Scholar 

  12. Cohen S.D., Matthews R.W.: Exceptional polynomials over finite fields. Finite Fields Appl. 1, 261–277 (1995).

    Article  MathSciNet  Google Scholar 

  13. Dillon J., Dobbertin H.: New cyclic difference sets with singer parameters. Finite Fields Appl. 10, 342–389 (2004).

    Article  MathSciNet  Google Scholar 

  14. Gold R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.). IEEE Trans. Inf. Theory 14(1), 15–156 (1968).

    Article  Google Scholar 

  15. Helleseth T., Kholosha A.: On the equation \(x^{2^l+1}+x+a=0\) over \(\rm GF(2^k)\). Finite Fields Appl. 14(1), 159–176 (2008).

    Article  MathSciNet  Google Scholar 

  16. Helleseth T., Kholosha A.: \(x^{2^l+1}+x+a\) and related affine polynomials over \(\rm GF(2^k)\). Cryptogr. Commun. 2(1), 85–109 (2010).

    Article  MathSciNet  Google Scholar 

  17. Hou X.D.: Permutation polynomials over finite fields—a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015).

    Article  MathSciNet  Google Scholar 

  18. Hou X.D.: On a class of permutation trinomials in characteristic \(2\). Cryptogr. Commun. 11(6), 1199–1210 (2019).

    Article  MathSciNet  Google Scholar 

  19. Hyunwoo K., Seonggyeom K., Deukjo H., Jaechul S., Seokhie H.: Improved differential-linear cryptanalysis using DLCT. J. Korea Inst. Inf. Secur. Cryptol. 28(6), 1379–1392 (2018).

    Google Scholar 

  20. Kasami T.: The weight enumerators for several classes of subcodes of the 2nd order binary reed-muller codes. Inf. Control 18(4), 369–394 (1971).

    Article  Google Scholar 

  21. Kim K.H., Choe J., Mesnager S.: Solving \(X^{q+1}+X+a=0\) over Finite Fields. Finite Fields Appl. 70, 101797 (2021).

    Article  Google Scholar 

  22. Kim K.H., Choe J.H., Mesnager S.: Complete solution over \(\rm GF({p^n})\) of the equation \(X^{p^k+1}+X+a=0\). Finite Fields Appl. 76, 101902 (2021).

    Article  Google Scholar 

  23. Kim K.H., Mesnager S.: Solving \(x^{2^k+1}+x+a=0\) in \(\rm GF({p^n})\) with \(\text{ gcd }(n, k)=1\). Finite Fields Appl. 63, 101630 (2020).

    Article  MathSciNet  Google Scholar 

  24. Li K., Li C., Helleseth T., Qu L.: Cryptographically strong permutations from the butterfly structure. Des. Codes Cryptogr. 89, 737–761, 2021. https://doi.org/10.1007/s10623-020-00837-5,Version posted in Archive in December (2019). arxiv:1912.02640.

  25. Li N., Hu Z., Xiong M., Zeng X.: \(4\)-uniform BCT permutations from generalized butterfly structure. arXiv:2001.00464v1. Accessed 2 Jan 2020.

  26. Li N., Hu Z., Xiong M., Zeng X.: A note on cryptographically strong permutations from the butterfly structure. J. Des. Codes Cryptogr. 90, 265–276 (2022).

    Article  MathSciNet  Google Scholar 

  27. Li K., Qu L., Li C., Chen H.: On a conjecture about a class of permutation quadrinomials. Finite Fields Appl. 66, 101690 (2020).

    Article  MathSciNet  Google Scholar 

  28. Li K., Qu L., Sun B., Li C.: New results about the boomerang uniformity of permutation polynomials. IEEE Trans. Inf. Theory 65(11), 7542–7553 (2019).

    Article  MathSciNet  Google Scholar 

  29. Li N., Xiong M., Zeng X.: On permutation quadrinomials and \(4\)-uniform BCT. IEEE Trans. Inf. Theory 67(7), 4845–4855 (2021).

    Article  MathSciNet  Google Scholar 

  30. Lidl R., Mullen G.L., Turnwald G.: Dickson Polynomials. Pitman Monogr. Surv. Pure Appl. Math., vol. 65. Longman Scientific & Technical, Harlow (1993).

    Google Scholar 

  31. Matsui M.: Linear Cryptanalysis Method for DES Cipher, Advances in Cryptology-EUROCRYPT’93, pp. 386–397. Springer, Berlin (1994).

    MATH  Google Scholar 

  32. Mesnager S., Kim K.H., Choe J.H., Lee D.N., Go D.S.: Solving \(x+x^{2^l}+\cdots +x^{2^{ml}}=a\) over \({\mathbb{F}}{2^n}\). Cryptogr. Commun. 12(4), 809–817 (2020).

    Article  MathSciNet  Google Scholar 

  33. Mesnager S., Tang C., Xiong M.: On the boomerang uniformity of quadratic permutations. Des. Codes Cryptogr. 88(10), 2233–2246 (2020).

    Article  MathSciNet  Google Scholar 

  34. Nyberg K.: On the construction of highly nonlinear permutations. Advances in Cryptology—EUROCRYPT’92, Lecture Notes in Computer Science, vol. 658, pp. 92–98. Springer, Berlin (1993).

  35. Nyberg K.: Differentially uniform mappings for cryptography. In: Proceedings of EUROCRYPT’93, Lecture Notes in Computer Science 765, pp. 55–64, 1994. See also Helleseth T (ed.) Advances in Cryptology (Lecture Notes in Computer Science), vol. 765, pp. 134–144. Springer, Berlin (1994).

  36. Peng J., Tan C.H.: New differentially 4-uniform permutations by modifying the inverse function on subfields. Cryptogr. Commun. 9(3), 363–378 (2017).

    Article  MathSciNet  Google Scholar 

  37. Perrin L., Udovenko A., Biryukov A.: Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem. In: CRYPTO’16, pp. 93–122 (2016).

  38. Qu L., Tan Y., Li C., Gong G.: More constructions of differentially 4-uniform permutations on \(\mathbb{F}_{2^{2k}}\). Des. Codes Cryptogr. 78(2), 391–408 (2016).

    MathSciNet  MATH  Google Scholar 

  39. Tan Y., Qu L., Tan C. H., Li C.: New families of differentially 4-uniform permutations over \({\mathbb{F}}_{2^{2k}}\). In: Helleseth T, Jedwab J (eds.) Sequences and Their Applications, Lecture Notes in Computer Science, vol. 7280, pp. 25–39. Springer, Berlin (2012).

  40. Tang D., Carlet C., Tang X.: Differentially 4-uniform bijections by permuting the inverse function. Des. Codes Cryptogr. 77(1), 117–141 (2015).

    Article  MathSciNet  Google Scholar 

  41. Tu Z., Li N., Zeng X., Zhou J.: A class of quadrinomial permutations with boomerang uniformity four. IEEE Trans. Inf. Theory 66(6), 3753–3765 (2020).

    Article  MathSciNet  Google Scholar 

  42. Tu Z., Liu X., Zeng X.: A revisit of a class of permutation quadrinomial. Finite Fields Appl. 59, 57–85 (2019).

    Article  MathSciNet  Google Scholar 

  43. Tu Z., Zeng X., Helleseth T.: New permutation quadrinomials over \(\rm GF({2}^{2m})\). Finite Fields Appl. 50, 304–318 (2018).

    Article  MathSciNet  Google Scholar 

  44. Wagner D.: The boomerang Attack. In: Knudsen L.R. (ed.) Fast Software Encryption, vol. 1636 of Lecture Notes in Computer Science, pp. 156–170. Springer (1999).

  45. Zieve M.E.: On some permutation polynomials over \(\mathbb{F}_q\) of the form \(x^rh(x^{(q-1)/d})\). Proc. Am. Math. Soc. 137(7), 2209–2216 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors deeply thank the Assoc. Edit. and the anonymous reviewers for their interesting comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihem Mesnager.

Additional information

Communicated by A. Winterhof.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix, we present the proofs of a series of results that we have used in Sect. 3.3.

Lemma 6

For any \(x\in \mathbb {F}_{2^m}\) with \(\mathrm {Tr}_1^m(x)=1\) and any integer \(2^{m-1}\le t<2^m-1\), letting \(l=\lceil \log _2{(2^m-t)}\rceil -1\), i.e. \(2^m-2^{l+1}\le t<2^m-2^l,\) one has

$$\begin{aligned} x^t=x^{t-2^{m}+2^{l+1}}+\sum _{i=l+1}^{m-1}x^{t-2^{m}+2^i}\cdot (x+x^{2}+\cdots +x^{2^{l}}), \end{aligned}$$

where all exponents appeared are less than \(2^{m-1}\), pairwise different and in order of size.

Proof

\(\mathrm {Tr}_1^m(x)=1\) can be rewritten as

$$\begin{aligned} x^{2^{m-1}}=1+x+x^{2}+\cdots +x^{2^{m-2}}. \end{aligned}$$

Therefore, if \(2^{m-1}\le t \), then

$$\begin{aligned} x^t=x^{t-2^{m-1}}\cdot (1+x+x^{2}+\cdots +x^{2^{m-2}}) \end{aligned}$$

and one has if \(2^m-2^{l+1}\le t<2^m-2^l,\) then \(t-2^{m-1}+2^j \ge 2^{m-1}\) for \(l+1\le j\le m-2\) and it holds that

$$\begin{aligned} x^t=x^{t-2^{m-1}}\cdot (1+x+x^{2}+\cdots +x^{2^{l}})+\sum _{i=l+1}^{m-2}x^{t-2^{m}+2^i}\cdot (1+x+x^{2}+\cdots +x^{2^{m-2}}). \end{aligned}$$

In the second summation, (only) the terms \(x^{t-2^m+2^i+2^j}\), where \(j\ge l+1\) and \(j\ne i\), appear twice and therefore can be canceled. Thus, we can write

$$\begin{aligned} x^t= & {} x^{t-2^{m-1}}\cdot (1+x+x^{2}+\cdots +x^{2^{l}})\\&+\sum _{i=l+1}^{m-2}x^{t-2^{m}+2^i}\cdot (1+x+x^{2}+\cdots +x^{2^{l}}+x^{2^i}), \end{aligned}$$

or

$$\begin{aligned} x^t=\sum _{i=l+1}^{m-1}x^{t-2^{m}+2^i}\cdot (1+x+x^{2}+\cdots +x^{2^{l}})+\sum _{i=l+1}^{m-2}x^{t-2^{m}+2^{i+1}}, \end{aligned}$$

or

$$\begin{aligned} x^t=x^{t-2^{m}+2^{l+1}}+\sum _{i=l+1}^{m-1}x^{t-2^{m}+2^i}\cdot (x+x^{2}+\cdots +x^{2^{l}}). \end{aligned}$$

It can be easily checked that all exponents in this last expression are less than \(2^{m-1}\), pairwise different and in order of size. \(\square \)

Corollary 5

Let \(0\le t<2^m\). The representative expression of \(X^t\) in \(\mathbb {F}_{2^m}[X]/(T_m(X)+1)\) has non-zero constant term if and only if \(t=2^m-2^l\) for some \(0\le l\le m\).

Using this corollary, we can state the following statement.

Proposition 4

Let \(s\ge 2\) and \(0\le i_1<i_2<\cdots<i_s<m\) be a sequence of integers such that \((i_x-i_y) \mod m \ne 1\) for every pair \((x,y)\in [1,s]^2\). Let \(\gamma \) be any constant in \(\mathbb {F}_{2^m}^*\). Then, the following are true:

  1. 1.

    \(T_m(\gamma \cdot \frac{1}{X^{2^{i_1}+2^{i_2}+\cdots +2^{i_s}}})\) has no constant term when expressed as an element in \(\mathbb {F}_{2^m}[X]/(T_m(X)+1)\).

  2. 2.

    \(T_m(\gamma \cdot X^{2^j}\cdot \frac{1}{X^{2^{i_1}+2^{i_2}+\cdots +2^{i_s}}})\) has non-zero constant term when expressed as an element in \(\mathbb {F}_{2^m}[X]/(T_m(X)+1)\) if and only if \(s=2\), and \(j=i_x\) or \(j=(i_x+1)\mod m\) for some \(1\le x\le 2\). Furthermore, if \(j=i_x\) for some \(1\le x\le 2\), then the constant term of \(T_m(\gamma \cdot X^{2^j}\cdot \frac{1}{X^{2^{i_1}+2^{i_2}}})\) is \(\gamma ^{2^{-(i_1+i_2-i_x)}}.\) If \(j=(i_x+1)\mod m\) for some \(1\le x\le 2\), then the constant term of \(T_m(\gamma \cdot X^{2^j}\cdot \frac{1}{X^{2^{i_1}+2^{i_2}}})\) is \(\gamma ^{2^{-i_x}}.\)

Proof

By Corollary 5, we have

$$\begin{aligned}&T_m(\gamma \cdot \frac{1}{X^{2^{i_1}+2^{i_2}+\cdots +2^{i_s}}})=\sum _{u=0}^{m-1}\gamma ^{2^u}\cdot \frac{1}{X^{2^{i_1+u}+2^{i_2+u}+\cdots +2^{i_s+u}}}\\&=\sum _{u=0}^{m-1}\gamma ^{2^u}\cdot X^{2^m-1-(2^{(i_1+u)\mod m}+2^{(i_2+u)\mod m}+\cdots +2^{(i_s+u)\mod m})} \end{aligned}$$

has non-zero constant term if and only if there exist some integers \(0\le u,v\le m\) such that

$$\begin{aligned}2^m-1-\left( 2^{(i_1+u)\mod m}+2^{(i_2+u)\mod m}+\cdots +2^{(i_s+u)\mod m}\right) =2^m-2^v,\end{aligned}$$

i.e.

$$\begin{aligned}2^v=1+\left( 2^{(i_1+u)\mod m}+2^{(i_2+u)\mod m}+\cdots +2^{(i_s+u)\mod m}\right) .\end{aligned}$$

Under the condition of the proposition, this is impossible when \(s\ge 2.\)

On the other hand,

$$\begin{aligned}&T_m(\gamma \cdot X^{2^j}\cdot \frac{1}{X^{2^{i_1}+2^{i_2}+\cdots +2^{i_s}}})=\sum _{u=0}^{m-1}\gamma ^{2^u}\cdot X^{2^{j+u}}\cdot \frac{1}{X^{2^{i_1+u}+2^{i_2+u}+\cdots +2^{i_s+u}}}\\&\quad =\sum _{u\in I_+}\gamma ^{2^u}\cdot X^{2^{(j+u)\mod m}-(2^{(i_1+u)\mod m}+2^{(i_2+u)\mod m}+\cdots +2^{(i_s+u)\mod m})}\\ {}&\qquad +\sum _{u\in I_-}\gamma ^{2^u}\cdot X^{2^{(j+u)\mod m}+2^m-1-(2^{(i_1+u)\mod m}+2^{(i_2+u)\mod m}+\cdots +2^{(i_s+u)\mod m})}, \end{aligned}$$

where

$$\begin{aligned}I_+:=\{0\le u\le m-1\mid 2^{(j+u)\mod m}\ge 2^{(i_1+u)\mod m}+\cdots +2^{(i_s+u)\mod m}\}\end{aligned}$$

and

$$\begin{aligned}I_-:=\{0\le u\le m-1\mid 2^{(j+u)\mod m}< 2^{(i_1+u)\mod m}+\cdots +2^{(i_s+u)\mod m}\}.\end{aligned}$$

The first summand has no constant term since

$$\begin{aligned}2^{(j+u)\mod m}- (2^{(i_1+u)\mod m}+\cdots +2^{(i_s+u)\mod m})<2^{m-1}\le 2^m-2^v\end{aligned}$$

for any \(0\le v\le m-1\) and obviously it can’t happen

$$\begin{aligned}2^{(j+u)\mod m}- (2^{(i_1+u)\mod m}+\cdots +2^{(i_s+u)\mod m})=0 (=2^m-2^m)\end{aligned}$$

as \(s\ge 2.\)

The second summation has non-zero constant term if and only if for some \(0\le v\le m\),o

$$\begin{aligned}&2^{(j+u)\mod m}+2^m-1-(2^{(i_1+u)\mod m}+2^{(i_2+u)\mod m}+\cdots +2^{(i_s+u)\mod m})\\&\quad =2^m-2^v,\end{aligned}$$

i.e.

$$\begin{aligned} 2^{(j+u)\mod m}+2^v=1+2^{(i_1+u)\mod m}+2^{(i_2+u)\mod m}+\cdots +2^{(i_s+u)\mod m}.\nonumber \\ \end{aligned}$$
(35)

Here, we have \((j+u)\mod m\ne 0\) and \(v\ne 0\). (In fact, if \((j+u)\mod m=0\), then

$$\begin{aligned}2^v=2^{(i_1+u)\mod m}+2^{(i_2+u)\mod m}+\cdots +2^{(i_s+u)\mod m}\end{aligned}$$

which is impossible as \(s\ge 2\). Assumption \(v=0\) yields the same impossibility.)

Now, we can assume w.l.o.g. \((i_1+u)\mod m<(i_2+u)\mod m<\cdots <(i_s+u)\mod m\). Since the left side of equality (35) is even, it follows \((i_1+u)\mod m=0\) (therefore, under the assumption of the proposition, \(2\le (i_2+u)\mod m\)), i.e.

$$\begin{aligned} u=m-i_1, \end{aligned}$$
(36)

and

$$\begin{aligned} 2^{(j+u)\mod m}+2^v=2+2^{(i_2+u)\mod m}+\cdots +2^{(i_s+u)\mod m}. \end{aligned}$$
(37)

Hence, it must be \(s\le 2\). Now, two cases are possible: (1) \((j+u)\mod m=(i_2+u)\mod m\) and \(v=1\); (2) \((j+u)\mod m=1\) and \(v=(i_2+u)\mod m\). In the first case, we get \(j=i_2\). In the second case, regarding (36), we get \(j=(i_1+1)\mod m\). By symmetry, the statement follows. \(\square \)

The following facts are simple.

Proposition 5

Let \(0<k,k'<m\) be integers with \(\mathrm {gcd}(m,k)=1\) and \(k\cdot k'\equiv 1\mod m\). There exist such integers \(1\le u,v\le k'\) that \((u-v)\cdot k \equiv 1 \mod m\) if and only if \(m< 2k'\).

Proof

If \((u-v)k \equiv 1 \mod m\) for some \(1\le u,v\le k'\), then \((u-v)k \equiv k'k \mod m\), i.e. \((k'-u+v)k\equiv 0 \mod m\) which means \(m \mid k'-u+v\) as k is coprime to m. Since \(|k'-u+v|<2k'\), it follows \(m< 2k'\).

Conversely, if \(m< 2k'\), then \(0<m-k'<k'\) and therefore with \(u=1\) and \(v=m-k'+1\) it holds that \((u-v)k \equiv 1 \mod m\). \(\square \)

Proposition 6

Let m be odd. For every \(x\in \mathbb {F}_{2^m}\) it holds that

$$\begin{aligned}\sum _{i=0}^{k'-1} T_k(x)^{q^i}=(k\cdot k'+1)\cdot \mathrm {Tr}_1^m(x)+x.\end{aligned}$$

In particular, if \(x\in \mathfrak {F}_1\), i.e. \(x\in {\mathbb F}_{2^m}[X]/(T_m(X)+1)\), then

$$\begin{aligned}\sum _{i=0}^{k'-1} T_k(x)^{q^i}=k\cdot k'+1+x\end{aligned}$$

and if \(x\in \mathfrak {F}_0\), then

$$\begin{aligned}\sum _{i=0}^{k'-1} T_k(x)^{q^i}=x.\end{aligned}$$

Proof

$$\begin{aligned}&\sum _{i=0}^{k'-1} T_k(x)^{q^i}=\frac{k\cdot k'-1}{m}\cdot \mathrm {Tr}_1^m(x)+x\\&= {\left\{ \begin{array}{ll}x, \text { if both { k} and k' are odd} \\ \mathrm {Tr}_1^m(x)+x, \text { otherwise} \end{array}\right. }=(k\cdot k'+1)\cdot \mathrm {Tr}_1^m(x)+x. \end{aligned}$$

\(\square \)

Proposition 7

Let \(m>2k'\) and \(k\cdot k'\equiv 1 \mod m\). Then,

$$\begin{aligned} \{1\le j\le k' \mid k\cdot j\mod m<k\}=\{1\le j\le k' \mid (k\cdot j+1)\mod m <k\}. \end{aligned}$$

Proof

First of all, \((kj+1)\mod m=0\) means \(j=m-k'> k'\). On the other hand, if \(kj\mod m<k<m\), then \((kj+1)\mod m =(kj\mod m)+1\). Therefore, for any \(1\le j\le k'\) in both sets, \((kj+1)\mod m =(kj\mod m)+1\), and it follows \(\{1\le j\le k' \mid kj\mod m<k\}\supset \{1\le j\le k' \mid (kj+1)\mod m <k\}\). If \(kj\mod m=k-1\), i.e. \(k(1-j)\mod m=1\), then \(j=m+1-k'>k'\). Thus, \(kj\mod m<k-1\) for any \(1\le j\le k'\) and we get also the inclusion in opposite direction, i.e. \(\{1\le j\le k' \mid kj\mod m<k\}\subset \{1\le j\le k' \mid (kj+1)\mod m <k\}\). \(\square \)

Proposition 8

Let \(1< j<k'\). Then, \(k\cdot j\mod m<k\) if and only if \(k\cdot (k'+1-j)\mod m<k\).

Proof

Let \(s:=kj\mod m\) and \(t:=k(k'+1-j)\mod m\). Note \(s\ne 1,k\) as \(j\ne 1,k'\). We have \(t=1+k-s \mod m\). Therefore, if \(s<k\), then \(t=k+1-s<k\). Now, if we assume that \(t<k\) and \(s> k\), then \(s\ne k+1\) since \(t\ne 0\), and we have \(t=k+1-s+m<k\), i.e. \(m<s-1\) which is a contradiction to \(s<m\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.H., Mesnager, S., Choe, J.H. et al. On permutation quadrinomials with boomerang uniformity 4 and the best-known nonlinearity. Des. Codes Cryptogr. 90, 1437–1461 (2022). https://doi.org/10.1007/s10623-022-01047-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01047-x

Keywords

Mathematics Subject Classification

Navigation