Towards the Complete Determination of Next-to-Minimal Weights of Projective Reed-Muller Codes | Designs, Codes and Cryptography
Skip to main content

Towards the Complete Determination of Next-to-Minimal Weights of Projective Reed-Muller Codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Projective Reed-Muller codes are obtained by evaluating homogeneous polynomials of degree d in \({\mathbb {F}}_q[X_0, \ldots , X_n]\) on the points of a projective space of dimension n defined over a finite field \({\mathbb {F}}_q\). They were introduced by Lachaud, in 1986, and their minimum distance was determined by Serre and Sørensen. As for the higher Hamming weights, contributions were made by Rodier, Sboui, Ballet and Rolland, mostly for the case where \(d < q\). In 2016 we succeeded in determining all next-to-minimal weights when \(q = 2\), and in 2018 we determined all next-to-minimal weights for \(q = 3 \), and almost all of these weights for the case where \(q \ge 4\). In the present paper we determine some of the missing next-to-minimal weights of projective Reed-Muller codes when \(q \ge 4\). Our proofs combine results of geometric nature with techniques from Gröbner basis theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballet S., Rolland R.: On low weight codewords of generalized affine and projective Reed-Muller codes. Des. Codes Cryptogr. 73(2), 271–297 (2014).

    Article  MathSciNet  Google Scholar 

  2. Becker T., Weispfenning V.: Gröbner Bases—A computational approach to commutative algebra. Springer 2nd. pr., Berlin (1998).

    MATH  Google Scholar 

  3. Carvalho C., Neumann V.G.L.: The Next-to-Minimal Weights of Binary Projective Reed-Muller Codes. IEEE Trans. Inform. Theory 62(11), 6300–6303 (2016).

    Article  MathSciNet  Google Scholar 

  4. Carvalho C., Neumann V.G.L.: On the next-to-minimal weight of affine cartesian codes. Finite Fields Appl. 44, 113–134 (2017).

    Article  MathSciNet  Google Scholar 

  5. Carvalho C., Neumann V.G.L.: On the next-to-minimal weight of projective Reed-Muller codes. Finite Fields Appl. 50, 382–390 (2018).

    Article  MathSciNet  Google Scholar 

  6. Carvalho, C., Neumann V.G.L.: An extension of Delsarte, Goethals and Mac Williams theorem on minimal weight codewords to a class of Reed-Muller type codes. To appear in Integrable systems and algebraic geometry, London Mathematical Society Lecture Note Series, Cambrige University Press.

  7. Delsarte P., Goethals J.M., Mac Williams F.J.: On generalized Reed-Muller codes and their relatives. Inform. Control 16, 403–442 (1970).

    Article  MathSciNet  Google Scholar 

  8. Cox D., Little J., O’Shea D.: Ideals, Varieties and Algorithms, 3rd edn. Springer, New York (2007).

    Book  Google Scholar 

  9. Rolland R.: The second weight of generalized Reed-Muller codes in most cases. Cryptogr. Commun. 2, 19–40 (2010).

    Article  MathSciNet  Google Scholar 

  10. Kasami T., Lin S., Peterson W.W.: New generalisations of the Reed-Muller codes. Part I: Primitive codes. IEEE Trans. Inform. Theory 2, 189–199 (1968).

    Article  Google Scholar 

  11. Lachaud G.: Projective Reed-Muller codes. Coding theory and applications (Cachan, 1986). Lecture Notes in Comput. Sci. 311, 125–129 (1988).

  12. Mercier D.J., Rolland R.: Polynômes homogènes qui s’annulent sur l’espace projectif \({\mathbb{P}}^m({{\mathbb{F}}_q} )\). J. Pure Appl. Algebra 124, 227–240 (1998).

    Article  MathSciNet  Google Scholar 

  13. Morelos-Zaragoza R.H.: The Art of Error Correcting Coding, 2nd edn. Wiley, New York (2006).

    Book  Google Scholar 

  14. Rentería C., Tapia-Recillas H.: Reed-Muller codes: an ideal theory approach. Comm. Algebra 25(2), 401–413 (1997).

    Article  MathSciNet  Google Scholar 

  15. Serre J.-P.: Lettre à M. Tsfasman du 24 Juillet 1989. In: Journées arithmétiques de Luminy 17–21 Juillet 1989, Astérisque, 198–200. Société Mathématique de France (1991).

  16. Sørensen A.: Projective Reed-Muller codes. IEEE Trans. Inform. Theory 37(6), 1567–1576 (1991).

    Article  MathSciNet  Google Scholar 

  17. Tomlinson M., Tjhai C., Ambrose M., Ahmed M., Jibril M.: Error-correction coding and decoding. SpringerOpen, (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cícero Carvalho.

Additional information

Communicated by G. Korchmaros.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cícero Carvalho and Victor Neumann were partially supported by Grants from CNPq and FAPEMIG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, C., Neumann, V.G.L. Towards the Complete Determination of Next-to-Minimal Weights of Projective Reed-Muller Codes. Des. Codes Cryptogr. 89, 301–315 (2021). https://doi.org/10.1007/s10623-020-00821-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00821-z

Keywords

Mathematics Subject Classification