Two families of two-weight codes over $$\mathbb {Z}_4$$ | Designs, Codes and Cryptography Skip to main content
Log in

Two families of two-weight codes over \(\mathbb {Z}_4\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Two infinite families of \(\mathbb {Z}_4\)-codes with two nonzero Lee weights are constructed by their generator matrices. Their Gray images are nonlinear with the same weight distribution as that of the two-weight binary codes of type SU1 in the sense of (Calderbank, Kantor, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brouwer A.E., van Maldeghem H.: Strongly regular graphs. https://homepages.cwi.nl/~aeb/math/srg/rk3/srgw.pdf. Accessed 20 Feb 2020.

  2. Calderbank A.R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986).

    Article  MathSciNet  Google Scholar 

  3. Delsarte P.: Weights of linear codes and strongly regular normed spaces. Discret. Math. 3, 47–64 (1972).

    Article  MathSciNet  Google Scholar 

  4. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({{\mathbb{Z}}}_4\)-linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).

    Article  Google Scholar 

  5. Krotov, D. S.: \({\mathbb{Z}}_4\)-linear perfect codes, Diskretn. Anal. Issled. Oper., Ser. 1, 7(4), 78–90 (2000). arXiv: 0710.0198 (English translation at arXiv:0710.0198).

  6. Krotov D.S.: \({\mathbb{Z}}_4\)-Linear Hadamard and Extended Perfect Codes, WCC2001. In: D. Augot, C. Carlet (eds.) International Workshop on Coding and Cryptography (Paris, France, 8–12 January 2001), Electronic Notes in Discrete Mathematics, vol. 6, 107–112. Elsevier B. V., Amsterdam (2001). arXiv:0710.0199.

  7. Shi M.J., Alahmadi A., Solé P.: Codes and Rings: Theory and Practice. Academic Press, New York (2017).

    MATH  Google Scholar 

  8. Shi M.J., Chen L.: Construction of two-Lee weight codes over \({\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p\). Int. J. Comput. Math. 93(3), 415–424 (2016).

    Article  MathSciNet  Google Scholar 

  9. Shi M.J., Guan Y., Solé P.: Two new families of two-weight codes. IEEE Trans. Inf. Theory 63(10), 6240–6246 (2017).

    Article  MathSciNet  Google Scholar 

  10. Shi M.J., Liu Y., Solé P.: Optimal two-weight codes from trace codes over \({\mathbb{F}}_2+ u{\mathbb{F}}_2\). IEEE Commun. Lett. 20(12), 2346–2349 (2016).

    Article  Google Scholar 

  11. Shi M.J., Wu R.S., Liu Y., Solé P.: Two and three weight codes over \({\mathbb{F}}_p+ u{\mathbb{F}}_p\). Cryptogr. Commun. 9(5), 637–646 (2017).

    Article  MathSciNet  Google Scholar 

  12. Shi M.J., Sepasdar Z., Alahmadi A., Solé P.: On two-weight \(Z_{2^k}\) -codes. Des. Codes Cryptogr. 86(6), 1201–1209 (2018).

    Article  MathSciNet  Google Scholar 

  13. Shi M.J., Solé P.: Optimal \(p\)-ary codes from one-weight codes and two-weight codes over \({\mathbb{F}}_p+v{\mathbb{F}}_p\). J. Syst. Sci. Complex. 28(3), 679–690 (2015).

    Article  MathSciNet  Google Scholar 

  14. Shi M.J., Wang Y.: Optimal binary codes from one-Lee weight codes and two-Lee weight projective codes over \({{\mathbb{Z}}}_4\). J. Syst. Sci. Complex. 27(4), 795–810 (2014).

    Article  MathSciNet  Google Scholar 

  15. Shi M.J., Wang C.C., Wu R.S., Hu Y., Chang Y.Q.: One-weight and two-weight \({{\mathbb{Z}}_2{{Z}}}_2[u,v]\)-additive codes. Cryptogr. Commun. 12(3), 443–454 (2020).

  16. Shi M.J., Xu L.L., Yang G.: A note on one weight and two weight projective \({\mathbb{Z}}_4\)-codes. IEEE Trans. Inf. Theory 63(1), 177–182 (2017).

    Article  Google Scholar 

  17. Wan Z.X.: Quaternary Codes. World Scientific, Singapore (1997).

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank Denis Krotov for helpful discussions. This research is supported by the National Natural Science Foundation of China (61672036), the Excellent Youth Foundation of Natural Science Foundation of Anhui Province (1808085J20), the Academic Fund for Outstanding Talents in Universities (gxbjZD03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjia Shi.

Additional information

Communicated by P. Charpin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Xuan, W. & Solé, P. Two families of two-weight codes over \(\mathbb {Z}_4\). Des. Codes Cryptogr. 88, 2493–2505 (2020). https://doi.org/10.1007/s10623-020-00796-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00796-x

Keywords

Mathematics Subject Classification

Navigation