Abstract
Two infinite families of \(\mathbb {Z}_4\)-codes with two nonzero Lee weights are constructed by their generator matrices. Their Gray images are nonlinear with the same weight distribution as that of the two-weight binary codes of type SU1 in the sense of (Calderbank, Kantor, 1986).
Similar content being viewed by others
References
Brouwer A.E., van Maldeghem H.: Strongly regular graphs. https://homepages.cwi.nl/~aeb/math/srg/rk3/srgw.pdf. Accessed 20 Feb 2020.
Calderbank A.R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986).
Delsarte P.: Weights of linear codes and strongly regular normed spaces. Discret. Math. 3, 47–64 (1972).
Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({{\mathbb{Z}}}_4\)-linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).
Krotov, D. S.: \({\mathbb{Z}}_4\)-linear perfect codes, Diskretn. Anal. Issled. Oper., Ser. 1, 7(4), 78–90 (2000). arXiv: 0710.0198 (English translation at arXiv:0710.0198).
Krotov D.S.: \({\mathbb{Z}}_4\)-Linear Hadamard and Extended Perfect Codes, WCC2001. In: D. Augot, C. Carlet (eds.) International Workshop on Coding and Cryptography (Paris, France, 8–12 January 2001), Electronic Notes in Discrete Mathematics, vol. 6, 107–112. Elsevier B. V., Amsterdam (2001). arXiv:0710.0199.
Shi M.J., Alahmadi A., Solé P.: Codes and Rings: Theory and Practice. Academic Press, New York (2017).
Shi M.J., Chen L.: Construction of two-Lee weight codes over \({\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p\). Int. J. Comput. Math. 93(3), 415–424 (2016).
Shi M.J., Guan Y., Solé P.: Two new families of two-weight codes. IEEE Trans. Inf. Theory 63(10), 6240–6246 (2017).
Shi M.J., Liu Y., Solé P.: Optimal two-weight codes from trace codes over \({\mathbb{F}}_2+ u{\mathbb{F}}_2\). IEEE Commun. Lett. 20(12), 2346–2349 (2016).
Shi M.J., Wu R.S., Liu Y., Solé P.: Two and three weight codes over \({\mathbb{F}}_p+ u{\mathbb{F}}_p\). Cryptogr. Commun. 9(5), 637–646 (2017).
Shi M.J., Sepasdar Z., Alahmadi A., Solé P.: On two-weight \(Z_{2^k}\) -codes. Des. Codes Cryptogr. 86(6), 1201–1209 (2018).
Shi M.J., Solé P.: Optimal \(p\)-ary codes from one-weight codes and two-weight codes over \({\mathbb{F}}_p+v{\mathbb{F}}_p\). J. Syst. Sci. Complex. 28(3), 679–690 (2015).
Shi M.J., Wang Y.: Optimal binary codes from one-Lee weight codes and two-Lee weight projective codes over \({{\mathbb{Z}}}_4\). J. Syst. Sci. Complex. 27(4), 795–810 (2014).
Shi M.J., Wang C.C., Wu R.S., Hu Y., Chang Y.Q.: One-weight and two-weight \({{\mathbb{Z}}_2{{Z}}}_2[u,v]\)-additive codes. Cryptogr. Commun. 12(3), 443–454 (2020).
Shi M.J., Xu L.L., Yang G.: A note on one weight and two weight projective \({\mathbb{Z}}_4\)-codes. IEEE Trans. Inf. Theory 63(1), 177–182 (2017).
Wan Z.X.: Quaternary Codes. World Scientific, Singapore (1997).
Acknowledgements
The authors thank Denis Krotov for helpful discussions. This research is supported by the National Natural Science Foundation of China (61672036), the Excellent Youth Foundation of Natural Science Foundation of Anhui Province (1808085J20), the Academic Fund for Outstanding Talents in Universities (gxbjZD03).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Charpin.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shi, M., Xuan, W. & Solé, P. Two families of two-weight codes over \(\mathbb {Z}_4\). Des. Codes Cryptogr. 88, 2493–2505 (2020). https://doi.org/10.1007/s10623-020-00796-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00796-x