Power error locating pairs | Designs, Codes and Cryptography Skip to main content
Log in

Power error locating pairs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We present a new decoding algorithm based on error locating pairs and correcting an amount of errors exceeding half the minimum distance. When applied to Reed–Solomon or algebraic geometry codes, the algorithm is a reformulation of the so-called power decoding algorithm. Asymptotically, it corrects errors up to Sudan’s radius. In addition, this new framework applies to any code benefiting from an error locating pair. Similarly to Pellikaan’s and Kötter’s approach for unique algebraic decoding, our algorithm provides a unified point of view for decoding codes with an algebraic structure beyond the half minimum distance. It permits to get an abstract description of decoding using only codes and linear algebra and without involving the arithmetic of polynomial and rational function algebras used for the definition of the codes themselves. Such algorithms can be valuable for instance for cryptanalysis to construct a decoding algorithm of a code without having access to the hidden algebraic structure of the code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. That is again bound (10).

  2. Remember that if \(C=C_L(\mathcal {X}, \mathcal {P}, G)\) with \(2g-2< \deg (G)<n\), then \(\dim (C)=\deg (G)-g+1\).

References

  1. Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill Book Co., New York (1968).

    MATH  Google Scholar 

  2. Berlekamp E.R.: Algebraic Coding Theory. World Scientific Publishing Co. Pvt. Ltd., Hackensack (2015). Revised Edition.

    Book  MATH  Google Scholar 

  3. Beelen P., Høholdt T.: The decoding of algebraic geometry codes. In: Mart E. (ed.) Advances in algebraic geometry codes, pp. 49–98. World Sci. Publ, Hackensack, NJ (2008).

    Chapter  MATH  Google Scholar 

  4. Beck V., Lecouvey C.: Additive combinatorics methods in associative algebras. Confluentes Math. 9(1), 3–27 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  5. Couvreur A., Márquez-Corbella I., Pellikaan R.: Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes. IEEE Trans. Inform. Theory 63(8), 5404–5418 (2017). Aug.

    Article  MathSciNet  MATH  Google Scholar 

  6. Couvreur A., Otmani A., Tillich J.-P.: Polynomial time attack on wild McEliece over quadratic extensions. IEEE Trans. Inform. Theory 63(1), 404–427 (2017). Jan.

    Article  MathSciNet  MATH  Google Scholar 

  7. Duursma I.M., Kötter R.: Error-locating pairs for cyclic codes. IEEE Trans. Inform. Theory 40(4), 1108–1121 (1994). July.

    Article  MathSciNet  MATH  Google Scholar 

  8. Duursma I.M.: Decoding Codes from Curves and Cyclic Codes. PhD thesis, Technische Universiteit Eindhoven (1993).

  9. Faure C., Minder L.: Cryptanalysis of the McEliece cryptosystem over hyperelliptic curves. In: Proceedings of the eleventh International Workshop on Algebraic and Combinatorial Coding Theory, pp. 99–107, Pamporovo, Bulgaria (2008).

  10. Gemmell P., Sudan M.: Highly resilient correctors for polynomials. Inform. Process. Lett. 43(4), 169–174 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  11. Guruswami V., Sudan M.: Improved decoding of Reed-Solomon and Algebraic-Geometry codes. IEEE Trans. Inform. Theory 45(6), 1757–1767 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao S., Shokrollahi M.A.: Computing roots of polynomials over function fields of curves. In: Joyner D. (ed.) Coding Theory and Cryptography, pp. 214–228. Springer, Berlin (2000).

    Chapter  Google Scholar 

  13. Guruswami V., Vardy A.: Maximum-likelihood decoding of Reed-Solomon codes is NP-hard. IEEE Trans. Inform. Theory 51(7), 2249–2256 (2005). July.

    Article  MathSciNet  MATH  Google Scholar 

  14. Høholdt T., Pellikaan R.: On the decoding of algebraic-geometric codes. IEEE Trans. Inform. Theory 41(6), 1589–1614 (1995). Nov.

    Article  MathSciNet  MATH  Google Scholar 

  15. Justesen J., Høholdt T.: A Course in Error-Correcting Codes, 1st edn. European Mathematical Society Publishing House, Zurich (2004).

    Book  MATH  Google Scholar 

  16. Justesen J., Larsen K.J., Jensen H.E., Havemose A., Hoholdt T.: Construction and decoding of a class of algebraic geometry codes. IEEE Trans. Inform. Theory 35(4), 811–821 (1989). July.

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson S.M.: A new upper bound for error-correcting codes. IRE Trans. Inform. Theory 8(3), 203–207 (1962). April.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kötter R.: A unified description of an error locating procedure for linear codes. In: Proceedings Algebraic and Combinatorial Coding Theory III, pp. 113–117. Hermes (1992).

  19. Knapp W., Schmid P.: Codes with prescribed automorphism group. J. Algebra 67(2), 415–435 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  20. McEliece R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44.

  21. McEliece R.J.: On the Average List Size for the Guruswami-Sudan decoder. In: 7th Inernational Symposium on Communications Theory and Applications (ISCTA) (2003).

  22. McEliece R.J.: The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes. Interplanet. Netw. Progress Rep. 153, 1–60 (2003). January.

    Google Scholar 

  23. Minder L.: Cryptography Based on Error Correcting Codes. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (2007).

  24. Mumford D.: Varieties defined by quadratic equations. In: Questions on Algebraic Varieties, C.I.M.E., III Ciclo, Varenna, 1969, pp. 29–100. Edizioni Cremonese, Rome (1970).

  25. Mirandola D., Zémor G.: Critical pairs for the product Singleton bound. IEEE Trans. Inform. Theory 61(9), 4928–4937 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. Nielsen J.S.R., Beelen P.: Sub-quadratic decoding of one-point Hermitian codes. IEEE Trans. Inform. Theory 61(6), 3225–3240 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  27. Nielsen J.S.R.: Power decoding of reed-solomon codes revisited. In: Pinto R., Rocha M.P., Vettori P. (eds.) Coding Theory and Applications, pp. 297–305. Springer, Cham (2015).

    Chapter  Google Scholar 

  28. Nielsen J.S.R.: Power decoding Reed-Solomon codes up to the Johnson radius. In: Adv. in Math. of Comm., 12:81–106 (2018).

  29. Pellikaan P.: On decoding linear codes by Error Correcting Pairs. Preprint Technical University Eindhoven (1988).

  30. Pellikaan R.: On decoding by error location and dependent sets of error positions. Discret. Math. 106–107, 369–381 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  31. Puchinger S., Rosenkilde J., Bouw I.: Improved power decoding of interleaved one-point Hermitian codes. Des. Codes Cryptogr. 87, 589–607 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  32. Parvaresh F., Vardy A.: Correcting errors beyond the Guruswami-Sudan radius in polynomial time. In: 46th Annual IEEE Symposium on Foundations of Computer Science, 2005. FOCS 2005, pp. 285–294 (2005)

  33. Roos C.: A new lower bound for the minimum distance of a cyclic code. IEEE Trans. Inform. Theory 29, 330–332 (1983). June.

    Article  MathSciNet  MATH  Google Scholar 

  34. Roth R.M.: Introduction to coding theory. Cambridge University Press, Cambridge (2006).

    Book  MATH  Google Scholar 

  35. Roth R.M., Seroussi G.: On generator matrices of MDS codes (Corresp.). IEEE Trans. Inform. Theory 31(6), 826–830 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  36. Rudra A., Wootters M.: Every list-decodable code for high noise has abundant near-optimal rate puncturings. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pp. 764–773, New York, NY, USA, 2014. Association for Computing Machinery.

  37. Sidelnikov V.V.M., Shestakov S.O.: On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discret. Math. Appl. 1(4), 439–444 (1992).

    MATH  Google Scholar 

  38. Schmidt G., Sidorenko V.R., Bossert M.: Collaborative decoding of interleaved Reed-Solomon codes and concatenated code designs. IEEE Trans. Inform. Theory 55(7), 2991–3012 (2009). July.

    Article  MathSciNet  MATH  Google Scholar 

  39. Schmidt G., Sidorenko V.R., Bossert M.: Syndrome Decoding of Reed-Solomon Codes Beyond Half the Minimum Distance Based on Shift-Register Synthesis. IEEE Trans. Inform. Theory 56(10), 5245–5252 (2010). Oct.

    Article  MathSciNet  MATH  Google Scholar 

  40. Stichtenoth H.: Algebraic Function Fields and Codes. vol. 254 of Graduate Texts in MathematicsSpringer, Berlin, second edition (2009).

    MATH  Google Scholar 

  41. Sudan M.: Decoding of Reed-Solomon Codes beyond the Error-Correction Bound. J. Complex. 13(1), 180–193 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  42. Skorobogatov A.N., Vlăduţ S.G.: On the decoding of algebraic-geometric codes. IEEE Trans. Inform. Theory 36(5), 1051–1060 (1990). Sep.

    Article  MathSciNet  MATH  Google Scholar 

  43. Shokrollahi M.A., Wasserman H.: List decoding of algebraic-geometric codes. IEEE Trans. Inform. Theory 45(2), 432–437 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  44. Tao T., Vu V.H.: Additive Combinatorics. volume 105 of Cambridge Studies in Advanced MathematicsCambridge University Press, Cambridge (2006).

    Book  MATH  Google Scholar 

  45. Tsfasman M,, Vladut S., Nogin D.: Algebraic geometric codes: basic notions, vol. 139. Mathematical Surveys and MonographsAmerican Mathematical Society, Providence, RI (2007).

  46. Welch L.R., Berlekamp E.R.: Error correction for algebraic block codes, 1983. US patent number 4,633,470.

  47. Zhang F., Zhang Z.: Code-based cryptosystem from quasi-cyclic elliptic codes. Cryptology ePrint Archive, Report 2018/1182, 2018. https://eprint.iacr.org/2018/1182.

Download references

Acknowledgements

The authors express their gratitude to the anonymous referees for their careful work and their many relevant comments permitting a significant improvement of this article. This work was supported by French Agence Nationale de la RechercheManta : ANR-15-CE39-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Couvreur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Codes, Cryptology and Curves”.

A Power decoding for algebraic geometry codes

A Power decoding for algebraic geometry codes

We show how the power decoding algorithm adapts to arbitrary algebraic geometry codes. Let \(C=C_L(\mathcal {X}, \mathcal {P}, G)\) and \(\mathbf{y} =\mathbf{c} +\mathbf{e} \in \mathbb {F}_q^n\) the word we want to correct, where \(\mathbf{c} \in C\). We have then

$$\begin{aligned} c={{\,\mathrm{ev}\,}}_{\mathcal {P}}(f)\text { with }f\in L(G). \end{aligned}$$

Furthermore, as in the previous sections, we suppose that \({{\,\mathrm{w}\,}}(\mathbf{e} )=t\) and denote the support of \(\mathbf{e} \) by \({I_{{\textit{\textbf{e}}}}}\). We keep the same idea we used in the version of the algorithm for Reed–Solomon codes. Indeed, let us suppose to have \(\Lambda \in \mathbb {F}_q(\mathcal {X})\) such that \(\Lambda (P_i)=0\) for all \(i\in {I_{{\textit{\textbf{e}}}}}\). Then, given \(\ell \in \mathbb {N}\) we get

$$\begin{aligned} \Lambda (P_i)y_i^j=\Lambda (P_i)f^j(P_i)\ \ \ \ \forall \ i=1,\dots , n,\ \ j=1,\dots \ell . \end{aligned}$$
(46)

We would like then to find \(\Lambda \) as above. It is easy to see that such a \(\Lambda \) has to be searched in L(F) for a certain F such that \(\deg (F)\hbox {\,\char 062\,}t+g\). (we will give a better bound for that soon). It is possible to see \((\Lambda , f)\) as a solution of

$$\begin{aligned} \lambda (P_i)y_i^j=\lambda (P_i)\phi ^j(P_i)\ \ \ \ \forall \ i=1,\dots , n,\ \ j=1,\dots \ell , \end{aligned}$$
(47)

that is, a system of \(n\ell \) equations whose unknowns are the coordinates of \(\lambda \) and \(\phi \) in the basis of respectively L(F) and L(G). System (47) is not linear in the unknowns though, hence we linearise it by considering a new function \(\nu _j:=\lambda \phi ^j\) for any equation. For all \(j\in \{1, \dots , \ell \}\), we get

$$\begin{aligned} \nu _j\in L(F)L(jG)\subseteq L(F+jG). \end{aligned}$$

In order to use Theorem 2.9, let us fix \(\deg (F)= t+2g\) and suppose \(\deg (G)\hbox {\,\char 062\,}2g+1\). We get then the following problem.

Key Problem 3

Given \(\mathbf{y} \in \mathbb {F}_q^n\) and \(t\in \mathbb {N}\), look for \(\lambda ,\nu _1, \dots , \nu _{\ell }\in \mathbb {F}_q^n(\mathcal {X})\) such that

  • \(\lambda \in L(F)\) with \(\deg (F)= t+2g\);

  • \(\nu _j\in L(F+jG)\) for all \(j=1,\dots ,\ell \);

  • \(\lambda (x_i)y_i=\nu _j(x_i)\) for all \(i=1,\dots , n\) and \(j=1,\dots , \ell \).

Therefore, even this case, the power decoding algorithm consists in solving a linear system and we will just consider a nonzero solution. Decoding Radius. As in the case of Reed–Solomon codes, we would like to have a solution space of dimension one. A necessary condition for that, is

$$\begin{aligned} \# unknowns\hbox {\,\char 054\,}\# equations+1. \end{aligned}$$
(48)

The number of equations is \(n\ell \). For the number of unknowns, we need to know the dimension of the spaces \(L(F+jG)\) for all \(j=1,\dots , \ell \). The bounds we have set in the hypothesis give

$$\begin{aligned}\nonumber \dim (L(F+jG))=t+g+j\deg (G)+1. \end{aligned}$$

Hence by condition (48) we get the following decoding radius

$$\begin{aligned} t\hbox {\,\char 054\,}\frac{2n\ell -\ell (\ell +1)\deg (G)}{2(\ell +1)}-g -\frac{\ell }{\ell +1}\cdot \end{aligned}$$
(49)

Remark A.1

This bound is not a sufficient condition to have a solution, but it is not even a necessary condition. In fact, as for the power decoding algorithm for Reed–Solomon codes, we could find a good solution even for a larger value of t and on the other hand the algorithm could fail even if t fulfills condition (49).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couvreur, A., Panaccione, I. Power error locating pairs. Des. Codes Cryptogr. 88, 1561–1593 (2020). https://doi.org/10.1007/s10623-020-00774-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00774-3

Keywords

Mathematics Subject Classification

Navigation