Isometry-dual flags of AG codes | Designs, Codes and Cryptography Skip to main content
Log in

Isometry-dual flags of AG codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Consider a complete flag \(\{0\} = C_0< C_1< \cdots < C_n = \mathbb {F}^n\) of one-point AG codes of length n over the finite field \(\mathbb {F}\). The codes are defined by evaluating functions with poles at a given point Q in points \(P_1,\dots ,P_n\) distinct from Q. A flag has the isometry-dual property if the given flag and the corresponding dual flag are the same up to isometry. For several curves, including the projective line, Hermitian curves, Suzuki curves, Ree curves, and the Klein curve over the field of eight elements, the maximal flag, obtained by evaluation in all rational points different from the point Q, is self-dual. More generally, we ask whether a flag obtained by evaluation in a proper subset of rational points is isometry-dual. In Geil et al. (2011) it is shown, for a curve of genus g, that a flag of one-point AG codes defined with a subset of \(n > 2g+2\) rational points is isometry-dual if and only if the last code \(C_n\) in the flag is defined with functions of pole order at most \(n+2g-1\). Using a different approach, we extend this characterization to all subsets of size \(n \ge 2g+2\). Moreover we show that this is best possible by giving examples of isometry-dual flags with \(n=2g+1\) such that \(C_n\) is generated by functions of pole order at most \(n+2g-2\). We also prove a necessary condition, formulated in terms of maximum sparse ideals of the Weierstrass semigroup of Q, under which a flag of punctured one-point AG codes inherits the isometry-dual property from the original unpunctured flag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).

    Article  MathSciNet  Google Scholar 

  2. Bras-Amorós M., de Mier A.: Representation of numerical semigroups by Dyck paths. Semigroup Forum 75(3), 677–682 (2007).

    Article  MathSciNet  Google Scholar 

  3. Bras-Amorós M., Lee K., Vico-Oton A.: New lower bounds on the generalized Hamming weights of AG codes. IEEE Trans. Inf. Theory 60(10), 5930–5937 (2014).

    Article  MathSciNet  Google Scholar 

  4. Geil O., Munuera C., Ruano D., Torres F.: On the order bounds for one-point AG codes. Adv. Math. Commun. 5(3), 489–504 (2011).

    Article  MathSciNet  Google Scholar 

  5. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Mathematical Library, vol. 16. North-Holland, Amsterdam (1977).

    Google Scholar 

  6. Munuera C., Pellikaan R.: Equality of geometric Goppa codes and equivalence of divisors. J. Pure Appl. Algebra 90(3), 229–252 (1993).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euijin Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Codes, Cryptology and Curves”.

Appendix: Reed Muller type code

Appendix: Reed Muller type code

Since the isometry-dual property of a complete flag of codes can be defined with respect to the generator matrix, we consider an example of codes not necessarily defined over a curve. Consider the affine space \(\mathbb {F}_2^m\). It is an m dimensional vector space over \(\mathbb {F}_2\), so elements are of the form \((\alpha _m, \alpha _{m-1}, \ldots , \alpha _1)\) where each \(\alpha _j \in \mathbb {F}_2 = \{0,1\}\) for \(j=1, \ldots , m\). Let \(x_{\alpha _j}\) be the coordinate functions for \(j=1, \ldots , m\), that is, \(x_{\alpha _j} ( \alpha _m, \alpha _{m-1}, \ldots , \alpha _1) = \alpha _j\) for \(j=1, \ldots , m\). Note that \(x_{\alpha _j}^2 = x_{\alpha _j}\). Then the coordinate ring is \(R=\mathbb {F}_2 [ x_1, x_2, \ldots , x_m]/I\) for \(I=(x_1^2 - x_1, x_2^2 - x_2, \ldots , x_m^2 - x_m)\), which is, as a set, a set of square free monomials in \(x_1, \ldots , x_m\). Let \(\alpha =(\alpha _m, \alpha _{m-1}, \ldots , \alpha _1)\) and \(\beta =(\beta _m, \beta _{m-1}, \ldots , \beta _1)\) be vectors in \(\mathbb {F}_2^m\). We write \(x^\alpha \) for the function \(x_1^{\alpha _1} x_2^{\alpha _2}\cdots x_m^{\alpha _m}\). An order on R is defined by \(x^\alpha < x^\beta \) if and only if

  1. 1.

    Either \(\sum \alpha _i < \sum \beta _i\)

  2. 2.

    or \(\sum \alpha _i = \sum \beta _i\) and \(\exists j\) such that \(\alpha _j =0\), \(\beta _j=1\) and \(\alpha _k=\beta _k\) for all \(k=j+1, \ldots , m\).

Call this by DegLex order. There is a bijection between \(\mathbb {F}_2\)-rational points of \(\mathbb {F}_2^m\) and functions in the coordinate ring R by \(\alpha \longleftrightarrow x^\alpha \). We copy the DegLex order on R to \(\mathbb {F}_2^m\). For a function \(f=X^\alpha \) and a point \(P = \beta \),

$$\begin{aligned} f(P) = {\left\{ \begin{array}{ll} 1 \;\;\text { if } x^\alpha | x^\beta \\ 0 \;\;\text { otherwise} \end{array}\right. } \end{aligned}$$

Let \(N=2^m\). Define an \(N\times N\) matrix \(A=(A_{f,P})\) with rows of functions in R and columns of affine points in \(\mathbb {F}_2^m\) both indexed by DegLex order. Then with this orders on points and functions, we get an isometry-dual matrix. For \(m=3\), we get the following matrix A.

 

000

001

010

100

011

101

110

111

1

1

1

1

1

1

1

1

1

\(x_1\)

0

1

0

0

1

1

0

1

\(x_2\)

0

0

1

0

1

0

1

1

\(x_3\)

0

0

0

1

0

1

1

1

\(x_1 x_2\)

0

0

0

0

1

0

0

1

\(x_1 x_3\)

0

0

0

0

0

1

0

1

\(x_2 x_3\)

0

0

0

0

0

0

1

1

\(x_1 x_2 x_3\)

0

0

0

0

0

0

0

1

Then it can be easily checked that this matrix is isometry-dual with the dualizing vector \((1, 1, \ldots , 1)\), that is, we get

$$\begin{aligned} A A^T = \left[ \begin{array}{cccccccc} 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 \\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 \\ 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 \\ \end{array} \right] \end{aligned}$$

For a subset of n rational points, the corresponding columns in A define a \(N \times n\) submatrix whose row spaces define a flag of length n from 0 to \(\mathbb {F}_2^n\). From this \(N\times n\) matrix choose n rows in a way that the chosen row is linearly independent on the previous rows. Then we get a complete flag of \(\mathbb {F}_2^n\) generated by the first i rows of the \(n\times n\) matrix. We are interested in the case when this choice gives an isometry-dual flag. The next two tables give the relevant minors that define the flag for the subsets of points \(\{ 000, 001, 010, 011 \}\) and \(\{ 000, 001, 010, 111 \}\).

 

000

001

010

011

 

000

001

010

111

1

1

1

1

1

1

1

1

1

1

\(x_1\)

0

1

0

1

\(x_1\)

0

1

0

1

\(x_2\)

0

0

1

1

\(x_2\)

0

0

1

1

\(x_1 x_2\)

0

0

0

1

\(x_3\)

0

0

0

1

The two subsets share the same minors and thus the same flags. Both are isometry-dual. For the first subset this follows immediately with the observation that the set is the set of all rational points in affine space of dimension 2, that is, it is in the affine plane which is a hyperplane of a coordinate function \(x_3\). The vanishing ideals for the two sets of points are

$$\begin{aligned} I( \{ 000, 001, 010, 011 \} )&= (x_3), \qquad \\ I( \{ 000, 001, 010, 111 \} )&= (x_1 x_2 + x_3, x_1 x_3 + x_3, x_2 x_3 + x_3). \end{aligned}$$

There are a total of 22 isometry-dual subsets of size 4. The row span \(R_5\) of the first five rows in the 8-by-8 matrix A, the rows labeled \(1, x_1, x_2, x_3 x_1 x_2\), contains 32 vectors, with weight distribution \(0\,(1\times ), 2\,(4\times ), 4\,(22\times ), 6\,(4\times ), 8\,(1\times ).\) The 22 vectors of weight 4 are the characteristic vectors of the 22 isometry-dual subsets of size 4. They are divided into four groups: 2 are in \(R_2 \backslash R_1\), 4 are in \(R_3 \backslash R_2\), 8 are in \(R_4 \backslash R_3\), and 8 are in \(R_5 \backslash R_4\). Minors for subsets in the same group share the same rows.

$$\begin{aligned}&R_2 \backslash R_1 : 1, x_2, x_3, x_2 x_3~(2\times ) \\&R_3 \backslash R_2 : 1, x_1, x_3, x_1 x_3~(4\times ) \\&R_4 \backslash R_3 : 1, x_1, x_2, x_1 x_2~(8\times ) \\&R_5 \backslash R_4 : 1, x_1, x_2, x_3~(8\times ) \end{aligned}$$

Let \(v=(1,1,1,0,0,0,0,1)\) be the characteristic vector for the subset \(\{ 000, 001, 010, 111 \}\).

$$\begin{aligned} A \hbox {diag}(v) A^T = \left[ \begin{array}{cccccccc} 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 \\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 \\ 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 \\ 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 \\ 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 \\ 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 \\ 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 \end{array} \right] \end{aligned}$$

The next propositions are proved computationally.

Proposition 26

There are \(54 = 2^6-10\) isometry-dual subsets of size 8 in the affine space \(\mathbb {F}_2^4\). Their characteristic vectors are the vectors of weight 8 in the row span \(R_6\) of rows corresponding to \(1, x_1, x_2, x_3, x_4, x_1 x_2\) in A. The weight distribution of the row span is \(0^1 4^4 8^{54} 12^4 16^1\). The 54 subsets are divided into 6 orbits of sizes 2, 4, 8, 16, 8, 16. Pivots are in positions \((x^\alpha ,x^{\alpha '})\) :

$$\begin{aligned} x^\alpha x^{\alpha '} = {\left\{ \begin{array}{ll} x_2 x_3 x_4 ~~(2\,\times ) \\ x_1 x_3 x_4 ~~(4\,\times ) \\ x_1 x_2 x_4 ~~(8\,\times ) \\ x_1 x_2 x_3 ~~(16\,\times ) \\ x_3 x_4 ~\text {or}~ x_1 x_2 x_4~~(8\,\times ) \\ x_3 x_4 ~\text {or}~ x_1 x_2 x_3~~(16\,\times ) \end{array}\right. } \end{aligned}$$

Ideals that represent the different groups are

$$\begin{aligned} I = {\left\{ \begin{array}{ll} (x_1) \\ (x_2) \\ (x_3) \\ (x_4) \\ (x_3 + x_1 x_2,\, x_3 + x_1 x_3,\, x_3 + x_2 x_3) \\ (x_4 + x_1 x_2,\, x_4 + x_1 x_4,\, x_4 + x_2 x_4) \end{array}\right. } \end{aligned}$$

Proposition 27

There are \(118 = 2^7-10\) isometry-dual subsets of size 16 in affine space \(\mathbb {F}_2^5\). Their characteristic vectors are the vectors of weight 16 in the row span \(R_7\) of rows corresponding to \(1, x_1, x_2, x_3, x_4, x_5, x_1 x_2\) in A. The weight distribution of the row span is \(0^1 8^4 16^{118} 24^4 32^1\). The 118 subsets are divided into 8 orbits of sizes 2, 4, 8, 16, 32, 8, 16, 32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bras-Amorós, M., Duursma, I. & Hong, E. Isometry-dual flags of AG codes. Des. Codes Cryptogr. 88, 1617–1638 (2020). https://doi.org/10.1007/s10623-020-00752-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00752-9

Keywords

Navigation