A new algorithm on the minimal rational fraction representation of feedback with carry shift registers | Designs, Codes and Cryptography Skip to main content
Log in

A new algorithm on the minimal rational fraction representation of feedback with carry shift registers

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In 1994, Klapper and Goresky (Proceedings of the 1993 Cambridge Security Workshop, Lecture Notes in Computer Science, vol 809, Cambridge, pp 174–178, 1994) proposed a new device called feedback with carry shift register to generate pseudo-random sequences instead of using the traditional device linear feedback shift register. They raised an algorithm called as rational approximation algorithm to recover the device for a given sequence (Klapper and Goresky, Advances in Cryptology, Crypto’95, Lecture Notes in Computer Science, vol 963, Springer, Berlin, pp 262–274, 1995). In this paper, we propose a new algorithm by introducing a new parameter and get the best rational approximation of the sequence much more quickly, especially when the size of the sequence increases dramatically. Unlike most of known algorithms, we can solve the minimal lattice basis instead of one shortest vector. Besides, we can prove that the solution of each step is optimal regardless of the length of the input sequence theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnault F., Berger T.P., Necer A.: Feedback with carry shift registers synthesis with the Euclidean algorithm. IEEE Trans. Inf. Theor. 50(5), 910–917 (2004).

    Article  MathSciNet  Google Scholar 

  2. Conway J.H., Sloane N.J.A.: Sphere Packings, Lattice and Groups, 2nd edn. Springer, New York (1993). https://doi.org/10.1007/978-1-4757-2249-9.

    Book  Google Scholar 

  3. de Weger B.M.M.: Approximation lattices of \(p\)-adic numbers. J. Num. Theory 24, 70–88 (1986).

    Article  MathSciNet  Google Scholar 

  4. Goresky M., Klapper A.: Feedback Registers Based on Ramified Extensions of the 2-adic Numbers, vol. 950, pp. 215–222. Advances in Cryptology-Eurocrypt’94, LNCSSpringer, Berlin (1995).

    MATH  Google Scholar 

  5. Goresky M., Klapper A.: Large Periods Nearly de Bruijn FCSR Sequences, vol. 921, pp. 263–273. Advances in Cryptology-Eurocrypt’95, LNCSSpringer, Berlin (1995).

    MATH  Google Scholar 

  6. Goresky M., Klapper A.: Algebraic Shift Register Sequences. Cambridge University Press, Cambridge (2009).

    MATH  Google Scholar 

  7. Klapper A., Goresky M.: 2-adic shift registers, fast software encryption. In: Proceedings of the 1993 Cambridge Security Workshop, Lecture Notes in Computer Science, vol. 809, Cambridge, pp. 174–178 (1994).

  8. Klapper, A., Goresky, M.: Cryptanalysis based on 2-adic rational approximation. In: Advances in Cryptology, Crypto’95, Lecture Notes in Computer Science, vol. 963, Springer, Berlin, pp. 262–274 (1995).

    Chapter  Google Scholar 

  9. Klapper A., Goresky M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10, 11–147 (1997).

    Article  MathSciNet  Google Scholar 

  10. Klapper A., Xu J.: Algebraic feedback shift registers. Theor. Comput. Sci. 226(1), 61–92 (1999).

    Article  MathSciNet  Google Scholar 

  11. Klapper A., Xu J.: Register synthesis for algebraic feedback shift registers based on non primes. Preprint (2002).

  12. Liu W., Klapper A.: A lattice rational approximation algorithm for AFSRs over quadratic integer rings. In: SETA 2014, LNCS 8865, pp. 200–211 (2014).

    Google Scholar 

  13. Mahler K.: On a geometrical representation of \(p\)-adic numbers. Ann. Math. 41, 8–56 (1940).

    Article  MathSciNet  Google Scholar 

  14. Massey J.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory IT–15, 122–127 (1969).

    Article  MathSciNet  Google Scholar 

  15. Meidl W.: Extended Games–Chan algorithm for the 2-adic complexity of FCSR-sequences. Theor. Comput. Sci. 290, 2045–2051 (2003).

    Article  MathSciNet  Google Scholar 

  16. Schönhage A., Strassen V.: Schnelle multiplikation grosser zahlen. Computing 7, 281–292 (1971).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longjiang Qu.

Additional information

Communicated by C. Mitchell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Nature Science Foundation of China (NSFC) under Grants 61722213, 11531002, 61572026, and the Open Foundation of State Key Laboratory of Cryptology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, Z., Li, K. et al. A new algorithm on the minimal rational fraction representation of feedback with carry shift registers. Des. Codes Cryptogr. 88, 533–552 (2020). https://doi.org/10.1007/s10623-019-00695-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00695-w

Keywords

Mathematics Subject Classification

Navigation