On intriguing sets of finite symplectic spaces | Designs, Codes and Cryptography Skip to main content
Log in

On intriguing sets of finite symplectic spaces

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Some constructions of intriguing sets of finite symplectic spaces are provided. In particular an affirmative answer to an existence question about small tight sets posed in De Beule et al. (Des Codes Cryptogr 50(2):187–201, 2009) is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and \(m\)-ovoids of finite polar spaces. J. Combin. Theory Ser. A 114(7), 1293–1314 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bray J., Holt D., Roney-Dougal C.: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. London Mathematical Society, LNS 407, Cambridge University Press, New York (2013).

    Book  MATH  Google Scholar 

  3. Bruen A.A., Hirschfeld J.W.P.: Intersections in projective space. I. Combinatorics. Math. Z. 193(2), 215–225 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  4. Butler D.K.: On the intersection of ovoids sharing a polarity. Geom. Dedicata 135, 157–165 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. Cossidente A.: On Kestenband–Ebert partitions. J. Combin. Des. 5(5), 367–375 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  6. Cossidente A., Culbert C., Ebert G.L., Marino G.: On \(m\)-ovoids of \({\cal{W}}(3, q)\). Finite Fields Appl. 14(1), 76–84 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  7. Cossidente A., Pavese F.: On the geometry of unitary involutions. Finite Fields Appl. 36, 14–28 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cossidente A., Pavese F.: Subspace codes in \({\rm PG}(2n-1,q)\). Combinatorica. doi:10.1007/s00493-016-3354-5.

  9. Cossidente A., Pavese F.: Intriguing sets of \({\cal{W}}(5, q)\), \(q\) even. J. Combin. Theory Ser. A 127, 303–313 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. De Beule J., Govaerts P., Hallez A., Storme L.: Tight sets, weighted \(m\)-covers, weighted \(m\)-ovoids, and minihypers. Des. Codes Cryptogr. 50(2), 187–201 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. Dye R.H.: Spreads and classes of maximal subgroups of \({\rm GL}_n(q),{\rm SL}_n(q),{\rm PGL}_n(q)\) and \({\rm PSL}_n(q)\). Ann. Mat. Pura Appl. 158(4), 33–50 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. Dye R.H.: Partitions and their stabilizers for line complexes and quadrics. Ann. Mat. Pura Appl. (V) 114, 173–194 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  13. Drudge K.: Proper \(2\)-covers of \({\rm PG}(3, q)\), \(q\) even. Geom. Dedicata 80(1–3), 59–64 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  14. Ebert G.L.: Partitioning projective geometries into caps. Can. J. Math. 37(6), 1163–1175 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirschfeld J.W.P.: Projective Geometries over Finite Fields. Oxford Mathematical MonographsOxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998).

    MATH  Google Scholar 

  16. Kelly S.: Constructions of intriguing sets of polar spaces from field reduction and derivation. Des. Codes Cryptogr. 43(1), 1–8 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. Kestenband B.C.: Projective geometries that are disjoint unions of caps. Can. J. Math. 32(6), 1299–1305 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  18. Kleidman P., Liebeck M.: The Subgroup Structure of the Finite Classical Groups, vol. 129. London Mathematical Society Lecture Note SeriesCambridge University Press, Cambridge (1990).

    Book  MATH  Google Scholar 

  19. Nakić A., Storme L.: Tight sets in finite classical polar spaces. Adv. Geom. 17(1), 109–129 (2017).

    MathSciNet  Google Scholar 

  20. O’Keefe C.M.: Ovoids in \({\rm PG}(3, q)\): a survey. Discret. Math. 151, 171–188 (1996).

    MathSciNet  Google Scholar 

  21. Pavese F.: Geometric constructions of two-character sets. Discret. Math. 338(3), 202–208 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. Segre B.: Forme e geometrie hermitiane, con particolare riguardo al caso finito. Ann. Mat. Pura Appl. 70(4), 1–201 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  23. Segre B.: On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two. Acta Arith. 5, 315–332 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  24. Segre B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. 64, 1–76 (1964).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pavese.

Additional information

Communicated by J. W. P. Hirschfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossidente, A., Pavese, F. On intriguing sets of finite symplectic spaces. Des. Codes Cryptogr. 86, 1161–1174 (2018). https://doi.org/10.1007/s10623-017-0387-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0387-8

Keywords

Mathematics Subject Classification

Navigation