Further results on rational points of the curve $$\displaystyle y^{q^n}-y=\gamma x^{q^h+1} - \alpha $$ over $${\mathbb {F}}_{q^m}$$ | Designs, Codes and Cryptography Skip to main content
Log in

Further results on rational points of the curve \(\displaystyle y^{q^n}-y=\gamma x^{q^h+1} - \alpha \) over \({\mathbb {F}}_{q^m}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let q be a positive power of a prime number. For arbitrary positive integers hnm with n dividing m and arbitrary \(\gamma ,\alpha \in {\mathbb {F}}_{q^m}\) with \(\gamma \ne 0\) the number of \({\mathbb {F}}_{q^m}\)-rational points of the curve \(y^{q^n}-y=\gamma x^{q^h+1} - \alpha \) is determined in many cases (Özbudak and Saygı, in: Larcher et al. (eds.) Applied algebra and number theory, 2014) with odd q. In this paper we complete some of the remaining cases for odd q and we also present analogous results for even q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Niederreiter H., Xing C.: Algebraic Geometry in Coding Theory and Cryptography. Princeton University Press, Princeton (2009).

  2. Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009).

  3. Tsfasman M.A., Vladut S.G., Nogin D.: Algebraic Geometric Codes: Basic Notions. American Mathematical Society, Providence (2007).

  4. Niederreiter H., Xing C.: Rational Points on Curves over Finite Fields: Theory and Applications. Cambridge University Press, Cambridge (2001).

  5. Özbudak F., Saygı Z.: Rational points of the curve \(y^{q^n}-y=\gamma x^{q^h+1} - \alpha \). In: Larcher G., Pillichshammer F., Winterhof A., Xing C. (eds.) Applied Algebra and Number Theory. Cambridge University Press, Cambridge (2014).

  6. Coulter R.S.: The number of rational points of a class of Artin–Schreier curves. Finite Fields Appl. 8, 397–413 (2002).

  7. Wolfmann J.: The number of points on certain algebraic curves over finite fields. Commun. Algebra 17, 2055–2060 (1989).

  8. Klapper A.: Cross-correlations of quadratic form sequences in odd characteristic. Des. Codes Cryptogr. 11(3), 289–305 (1997).

  9. Coulter R.S.: Explicit evaluations of some Weil sums. Acta Arith. 83, 241–251 (1998).

  10. Coulter R.S.: Further evaluations of some Weil sums. Acta Arith. 86, 217–226 (1998).

  11. Coulter R.S.: On the evaluation of a class of Weil sums in characteristic 2. N. Z. J. Math. 28, 171–184 (1999).

  12. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).

Download references

Acknowledgments

We would like to thank the anonymous referees for their insightful and helpful comments that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferruh Özbudak.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Appendix

Appendix

Here we recall some of the results obtained in [5] for completeness. Let p be odd and q, m, h, n, \(\alpha \), \(\gamma \), A, N be defined as above in Sect. 1.

Let N(mn) denote the cardinality

$$\begin{aligned} N(m,n) = \left| \left\{ x \in {\mathbb {F}}_{q^m} \mid \mathrm{Tr}_{{\mathbb {F}}_{q^{m}}/{\mathbb {F}}_{q^n}}\left( \gamma x^{q^h+1} -\alpha \right) = 0 \right\} \right| . \end{aligned}$$

Therefore, we have \(N=q^n N(m,n)\). The number N(mn) is computed in [5] instead of N.

Theorem 5

Assume that \(s\le t\). Let \(\eta \) and \(\eta '\) denote the quadratic characters of \({\mathbb {F}}_q\) and \({\mathbb {F}}_{q^m}\), respectively.

  • If m / n is even and \(A=0\), then

    $$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} - \left( q^n-1\right) q^{m/2-n} &{} \quad \text{ if }\, \eta \left( (-1)^{m/2}\right) \eta '(\gamma )=1, \\ q^{m-n} + \left( q^n-1\right) q^{m/2-n} &{} \quad \text{ if }\, \eta \left( (-1)^{m/2}\right) \eta '(\gamma )=-1. \end{array} \right. \end{aligned}$$
  • If m / n is even and \(A\ne 0\), then

    $$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{m/2-n} &{}\quad \text{ if } \eta \left( (-1)^{m/2}\right) \eta '(\gamma )=1, \\ q^{m-n} - q^{m/2-n} &{} \quad \text{ if } \eta \left( (-1)^{m/2}\right) \eta '(\gamma )=-1. \end{array} \right. \end{aligned}$$
  • If m / n is odd and \(A=0\), then

    $$\begin{aligned} N(m,n)=q^{m-n}. \end{aligned}$$
  • If m / n is odd, \(A\ne 0\) and n is even, then

    $$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{(m-n)/2} &{} \quad \text{ if } (u_1,u_2) \in \left\{ (1,1), (-1,-1)\right\} , \\ q^{m-n} - q^{(m-n)/2} &{}\quad \text{ if } (u_1,u_2) \in \left\{ (1,-1), (-1,1)\right\} , \end{array} \right. \end{aligned}$$

    where \(u_1\) and \(u_2\) are the integers in the set \(\{-1,1\}\) given by

    $$\begin{aligned} u_1=\eta \left( (-1)^{m/2} \right) \eta '(\gamma ) \text{ and } u_2=\eta \left( (-1)^{n/2}\right) \eta '(A). \end{aligned}$$
  • If m / n is odd, \(A\ne 0\) and n is odd, then

    $$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{(m-n)/2} &{} \quad \text{ if }\, (u_1,u_2) \in \left\{ (1,1), (-1,-1)\right\} , \\ q^{m-n} - q^{(m-n)/2} &{}\quad \text{ if }\, (u_1,u_2) \in \left\{ (1,-1), (-1,1)\right\} , \end{array} \right. \end{aligned}$$

    where \(u_1\) and \(u_2\) are the integers in the set \(\{-1,1\}\) given by

    $$\begin{aligned} u_1=\eta \left( (-1)^{(m-1)/2} \right) \eta '(\gamma ) \;\text{ and }\;u_2=\eta \left( (-1)^{(n-1)/2}\right) \eta '(A). \end{aligned}$$

Theorem 6

Assume that \(s \ge t+1\) and \(u\le t\). Let \(\omega \) be a generator of the multiplicative group \({\mathbb {F}}_{q^m} \setminus \{0\}\) and let a be the integer with \(0 \le a < q^m-1\) such that \(\gamma =\omega ^a\).

  • Case \(s=t+1\) Put \(q_1=q^{2^tr}\).

    • If \(a \not \equiv m_1 \frac{q_1+1}{2} \mod (q_1+1)\), then

      $$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{m/2-n} &{}\quad \text{ if }\, A \ne 0, \\ q^{m-n} -(q^n-1)q^{m/2-n} &{} \quad \text{ if }\, A =0. \end{array} \right. \end{aligned}$$
    • If \(a \equiv m_1 \frac{q_1+1}{2} \mod (q_1+1)\), then for \(k=2^{t+1}r\) we have that

      $$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} - q^{(m+k)/2-n} &{} \quad \text{ if }\,A \ne 0, \\ q^{m-n} + (q^n-1)q^{(m+k)/2-n} &{} \quad \text{ if }\,A =0. \end{array} \right. \end{aligned}$$
  • Case \(s \ge t+2\) Put \(q_1=q^{2^tr}\).

    • If \(a \not \equiv 0 \mod (q_1+1)\), then

      $$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} - q^{m/2-n} &{}\quad \text{ if }\,A \ne 0, \\ q^{m-n} + (q^n-1)q^{m/2-n} &{}\quad \text{ if }\,A =0. \end{array} \right. \end{aligned}$$
    • If \(a \equiv 0 \mod (q_1+1)\), then for \(k=2^{t+1}r\) we have that

      $$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{(m+k)/2-n} &{} \quad \text{ if }\,A \ne 0, \\ q^{m-n} - (q^n-1)q^{(m+k)/2-n} &{} \quad \text{ if }\,A =0. \end{array} \right. \end{aligned}$$

Theorem 7

Assume that \(t+1\le u \le s\) and \(A=0\). Let \(\omega \) be a generator of the multiplicative group \({\mathbb {F}}_{q^m} \setminus \{0\}\) and let a be the integer with \(0 \le a < q^m-1\) such that \(\gamma =\omega ^a\).

  • Case \(s=t+1\) Put \(B_1=\gcd \left( m_2, q^{2^t \rho }+1\right) \).

    • If \(a \equiv n_1 m_2 \frac{q^{2^t r}+1}{2} \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then

      $$\begin{aligned} N(m,n)=q^{m-n} - (q^{n}-1)q^{m/2-n} + B_1\frac{q^n-1}{q^{2^t \rho }+1}\left( q^{m/2 + 2^t r -n} + q^{m/2-n}\right) . \end{aligned}$$
    • If \(a \not \equiv n_1 m_2 \frac{q^{2^t r}+1}{2} \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then

      $$\begin{aligned} N(m,n)=q^{m-n} - (q^{n}-1)q^{m/2-n}. \end{aligned}$$
  • Case \(s\ge t+2\) Put \(B_1=\gcd \left( 2^{s-u} m_2, q^{2^t \rho }+1\right) \).

    • If \(a \not \equiv n_1 m_2 \frac{q^{2^t r}+1}{2} \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then

      $$\begin{aligned} N(m,n)=q^{m-n} - (q^{n}-1)q^{m/2-n}. \end{aligned}$$
    • If \(a \equiv 0 \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then

      $$\begin{aligned} N(m,n)=q^{m-n} + (q^{n}-1)q^{m/2-n} - B_1\frac{q^n-1}{q^{2^t \rho }+1}\left( q^{m/2 + 2^t r -n} + q^{m/2-n}\right) . \end{aligned}$$
    • If \(a \not \equiv 0 \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then

      $$\begin{aligned} N(m,n)=q^{m-n} + (q^{n}-1)q^{m/2-n}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coşgun, A., Özbudak, F. & Saygı, Z. Further results on rational points of the curve \(\displaystyle y^{q^n}-y=\gamma x^{q^h+1} - \alpha \) over \({\mathbb {F}}_{q^m}\) . Des. Codes Cryptogr. 79, 423–441 (2016). https://doi.org/10.1007/s10623-015-0107-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0107-1

Keywords

Mathematics Subject Classification

Navigation