Abstract
Let q be a positive power of a prime number. For arbitrary positive integers h, n, m with n dividing m and arbitrary \(\gamma ,\alpha \in {\mathbb {F}}_{q^m}\) with \(\gamma \ne 0\) the number of \({\mathbb {F}}_{q^m}\)-rational points of the curve \(y^{q^n}-y=\gamma x^{q^h+1} - \alpha \) is determined in many cases (Özbudak and Saygı, in: Larcher et al. (eds.) Applied algebra and number theory, 2014) with odd q. In this paper we complete some of the remaining cases for odd q and we also present analogous results for even q.
Similar content being viewed by others
References
Niederreiter H., Xing C.: Algebraic Geometry in Coding Theory and Cryptography. Princeton University Press, Princeton (2009).
Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009).
Tsfasman M.A., Vladut S.G., Nogin D.: Algebraic Geometric Codes: Basic Notions. American Mathematical Society, Providence (2007).
Niederreiter H., Xing C.: Rational Points on Curves over Finite Fields: Theory and Applications. Cambridge University Press, Cambridge (2001).
Özbudak F., Saygı Z.: Rational points of the curve \(y^{q^n}-y=\gamma x^{q^h+1} - \alpha \). In: Larcher G., Pillichshammer F., Winterhof A., Xing C. (eds.) Applied Algebra and Number Theory. Cambridge University Press, Cambridge (2014).
Coulter R.S.: The number of rational points of a class of Artin–Schreier curves. Finite Fields Appl. 8, 397–413 (2002).
Wolfmann J.: The number of points on certain algebraic curves over finite fields. Commun. Algebra 17, 2055–2060 (1989).
Klapper A.: Cross-correlations of quadratic form sequences in odd characteristic. Des. Codes Cryptogr. 11(3), 289–305 (1997).
Coulter R.S.: Explicit evaluations of some Weil sums. Acta Arith. 83, 241–251 (1998).
Coulter R.S.: Further evaluations of some Weil sums. Acta Arith. 86, 217–226 (1998).
Coulter R.S.: On the evaluation of a class of Weil sums in characteristic 2. N. Z. J. Math. 28, 171–184 (1999).
Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).
Acknowledgments
We would like to thank the anonymous referees for their insightful and helpful comments that improved the presentation of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.
Appendix
Appendix
Here we recall some of the results obtained in [5] for completeness. Let p be odd and q, m, h, n, \(\alpha \), \(\gamma \), A, N be defined as above in Sect. 1.
Let N(m, n) denote the cardinality
Therefore, we have \(N=q^n N(m,n)\). The number N(m, n) is computed in [5] instead of N.
Theorem 5
Assume that \(s\le t\). Let \(\eta \) and \(\eta '\) denote the quadratic characters of \({\mathbb {F}}_q\) and \({\mathbb {F}}_{q^m}\), respectively.
-
If m / n is even and \(A=0\), then
$$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} - \left( q^n-1\right) q^{m/2-n} &{} \quad \text{ if }\, \eta \left( (-1)^{m/2}\right) \eta '(\gamma )=1, \\ q^{m-n} + \left( q^n-1\right) q^{m/2-n} &{} \quad \text{ if }\, \eta \left( (-1)^{m/2}\right) \eta '(\gamma )=-1. \end{array} \right. \end{aligned}$$ -
If m / n is even and \(A\ne 0\), then
$$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{m/2-n} &{}\quad \text{ if } \eta \left( (-1)^{m/2}\right) \eta '(\gamma )=1, \\ q^{m-n} - q^{m/2-n} &{} \quad \text{ if } \eta \left( (-1)^{m/2}\right) \eta '(\gamma )=-1. \end{array} \right. \end{aligned}$$ -
If m / n is odd and \(A=0\), then
$$\begin{aligned} N(m,n)=q^{m-n}. \end{aligned}$$ -
If m / n is odd, \(A\ne 0\) and n is even, then
$$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{(m-n)/2} &{} \quad \text{ if } (u_1,u_2) \in \left\{ (1,1), (-1,-1)\right\} , \\ q^{m-n} - q^{(m-n)/2} &{}\quad \text{ if } (u_1,u_2) \in \left\{ (1,-1), (-1,1)\right\} , \end{array} \right. \end{aligned}$$where \(u_1\) and \(u_2\) are the integers in the set \(\{-1,1\}\) given by
$$\begin{aligned} u_1=\eta \left( (-1)^{m/2} \right) \eta '(\gamma ) \text{ and } u_2=\eta \left( (-1)^{n/2}\right) \eta '(A). \end{aligned}$$ -
If m / n is odd, \(A\ne 0\) and n is odd, then
$$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{(m-n)/2} &{} \quad \text{ if }\, (u_1,u_2) \in \left\{ (1,1), (-1,-1)\right\} , \\ q^{m-n} - q^{(m-n)/2} &{}\quad \text{ if }\, (u_1,u_2) \in \left\{ (1,-1), (-1,1)\right\} , \end{array} \right. \end{aligned}$$where \(u_1\) and \(u_2\) are the integers in the set \(\{-1,1\}\) given by
$$\begin{aligned} u_1=\eta \left( (-1)^{(m-1)/2} \right) \eta '(\gamma ) \;\text{ and }\;u_2=\eta \left( (-1)^{(n-1)/2}\right) \eta '(A). \end{aligned}$$
Theorem 6
Assume that \(s \ge t+1\) and \(u\le t\). Let \(\omega \) be a generator of the multiplicative group \({\mathbb {F}}_{q^m} \setminus \{0\}\) and let a be the integer with \(0 \le a < q^m-1\) such that \(\gamma =\omega ^a\).
-
Case \(s=t+1\) Put \(q_1=q^{2^tr}\).
-
If \(a \not \equiv m_1 \frac{q_1+1}{2} \mod (q_1+1)\), then
$$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{m/2-n} &{}\quad \text{ if }\, A \ne 0, \\ q^{m-n} -(q^n-1)q^{m/2-n} &{} \quad \text{ if }\, A =0. \end{array} \right. \end{aligned}$$ -
If \(a \equiv m_1 \frac{q_1+1}{2} \mod (q_1+1)\), then for \(k=2^{t+1}r\) we have that
$$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} - q^{(m+k)/2-n} &{} \quad \text{ if }\,A \ne 0, \\ q^{m-n} + (q^n-1)q^{(m+k)/2-n} &{} \quad \text{ if }\,A =0. \end{array} \right. \end{aligned}$$
-
-
Case \(s \ge t+2\) Put \(q_1=q^{2^tr}\).
-
If \(a \not \equiv 0 \mod (q_1+1)\), then
$$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} - q^{m/2-n} &{}\quad \text{ if }\,A \ne 0, \\ q^{m-n} + (q^n-1)q^{m/2-n} &{}\quad \text{ if }\,A =0. \end{array} \right. \end{aligned}$$ -
If \(a \equiv 0 \mod (q_1+1)\), then for \(k=2^{t+1}r\) we have that
$$\begin{aligned} N(m,n)=\left\{ \begin{array}{ll} q^{m-n} + q^{(m+k)/2-n} &{} \quad \text{ if }\,A \ne 0, \\ q^{m-n} - (q^n-1)q^{(m+k)/2-n} &{} \quad \text{ if }\,A =0. \end{array} \right. \end{aligned}$$
-
Theorem 7
Assume that \(t+1\le u \le s\) and \(A=0\). Let \(\omega \) be a generator of the multiplicative group \({\mathbb {F}}_{q^m} \setminus \{0\}\) and let a be the integer with \(0 \le a < q^m-1\) such that \(\gamma =\omega ^a\).
-
Case \(s=t+1\) Put \(B_1=\gcd \left( m_2, q^{2^t \rho }+1\right) \).
-
If \(a \equiv n_1 m_2 \frac{q^{2^t r}+1}{2} \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then
$$\begin{aligned} N(m,n)=q^{m-n} - (q^{n}-1)q^{m/2-n} + B_1\frac{q^n-1}{q^{2^t \rho }+1}\left( q^{m/2 + 2^t r -n} + q^{m/2-n}\right) . \end{aligned}$$ -
If \(a \not \equiv n_1 m_2 \frac{q^{2^t r}+1}{2} \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then
$$\begin{aligned} N(m,n)=q^{m-n} - (q^{n}-1)q^{m/2-n}. \end{aligned}$$
-
-
Case \(s\ge t+2\) Put \(B_1=\gcd \left( 2^{s-u} m_2, q^{2^t \rho }+1\right) \).
-
If \(a \not \equiv n_1 m_2 \frac{q^{2^t r}+1}{2} \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then
$$\begin{aligned} N(m,n)=q^{m-n} - (q^{n}-1)q^{m/2-n}. \end{aligned}$$ -
If \(a \equiv 0 \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then
$$\begin{aligned} N(m,n)=q^{m-n} + (q^{n}-1)q^{m/2-n} - B_1\frac{q^n-1}{q^{2^t \rho }+1}\left( q^{m/2 + 2^t r -n} + q^{m/2-n}\right) . \end{aligned}$$ -
If \(a \not \equiv 0 \mod \left( \frac{q^{2^t r}+1}{q^{2^t \rho }+1}B_1\right) \), then
$$\begin{aligned} N(m,n)=q^{m-n} + (q^{n}-1)q^{m/2-n}. \end{aligned}$$
-
Rights and permissions
About this article
Cite this article
Coşgun, A., Özbudak, F. & Saygı, Z. Further results on rational points of the curve \(\displaystyle y^{q^n}-y=\gamma x^{q^h+1} - \alpha \) over \({\mathbb {F}}_{q^m}\) . Des. Codes Cryptogr. 79, 423–441 (2016). https://doi.org/10.1007/s10623-015-0107-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-015-0107-1