Abstract
An algorithm for enumerating Kerdock codes is discussed and used to show that the Kerdock code of length 64 is unique up to equivalence.
Similar content being viewed by others
References
Borges J., Fernandez C., Phelps K.T.: QRM codes. IEEE Trans. Inf. Theory 54(1), 380–386 (2008).
Borges J., Phelps K.T., Rifa J., Zinoviev V.: On \({\mathbb{Z}}_4\)-linear Preparata-like and Kerdock-like codes. IEEE Trans. Inf. Theory 49(11), 2834–2843 (2003).
Calderbank A.R., Cameron P.J., Kantor W.M., Seidel J.J.: \({\mathbb{Z}}_4\)-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. Lond. Math. Soc. (3) 75(2), 436–480 (1997).
Carlet C., Yucas J.: Piecewise constructions of bent and almost optimal Boolean functions. Des. Codes Cryptogr. 37, 449–464 (2005).
Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Sole P.: The \({\mathbb{Z}}_{4}\)-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).
Kantor W.M.: An exponential number of generalized Kerdock codes. Inf. Control 53, 74–80 (1982).
Kantor W. M.: Codes, quadratic forms and finite geometries. Different Aspects of Coding Theory (San Francisco, CA, 1995). In: Proceedings of the Symposia in Applied Mathematics, vol. 50, pp. 153–177. American Mathematical Society, Providence (1995).
Kantor W.M., Williams M.E.: Symplectic semi-field planes and \({\mathbb{Z}}_4\)-linear codes. Trans. Am. Math. Soc. 356(3), 895–938 (2003).
Kerdock A.M.: A class of low rate nonlinear binary codes. Inf. Control 20, 182–187 (1972).
MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1997).
Preparata F.P.: A class of optimum nonlinear double-error correcting codes. Inf. Control 13, 378–400 (1968).
Rothaus O.S.: On bent functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).
Semakov N.V., Zinoviev V.A., Zaitsev G.V.: On duality of Preparata and Kerdock codes. In: Proceedings of the Fifth All-Union Conference on Coding Theory, Part 2, Moscow-Gorkyi, Moscow, pp. 55–58 (1972).
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Cryptography, Codes, Designs and Finite Fields: In Memory of Scott A. Vanstone”.
Rights and permissions
About this article
Cite this article
Phelps, K. Enumeration of Kerdock codes of length 64. Des. Codes Cryptogr. 77, 357–363 (2015). https://doi.org/10.1007/s10623-015-0053-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-015-0053-y