Generalized residue and t-residue codes and their idempotent generators | Designs, Codes and Cryptography Skip to main content
Log in

Generalized residue and t-residue codes and their idempotent generators

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper a general class of linear cyclic codes \(C_{n,q,t}^i , 1\le i\le t\), is defined of length \(n\) and over a field \({ GF}(q)\) with \((n,q)=1\). This class of codes includes as special cases quadratic residue codes, generalized quadratic residue codes, \(e\)-residue codes and \(Q\)-codes. Furthermore, they partially overlap with the families of duadic, triadic and polyadic codes. Expressions for idempotent generators are derived in terms of the size of cyclotomic cosets mod \(n \) and coefficients of the irreducible polynomials over \({ GF}(q)\) dividing \(x^{n}-1\). As an auxiliary tool an orthonormal matrix is introduced whose columns correspond to these idempotents. Concrete examples are presented for \(t=2\) and \(n\in \{p^{\lambda },2p^{\lambda },2^{\lambda }\}, \lambda \ge 1\), where \(p\) is an arbitrary odd prime. When \(n=p^{\lambda }\) or \(n=2p^{\lambda }\) the codes all belong to the subclass of 2-residue codes. Using this technique, we determine the idempotents of the codes \(C_{2^{\lambda },q,2}^i \), and recover those of the generalized quadratic codes \(C_{p^{\lambda },q,2}^i \) and of the codes \(C_{2p^{\lambda },q,2}^i \). In the final section the idempotents of the cubic residue codes \(C_{p,q,3}^i \) are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arora S.K., Pruthi M.: Minimal cyclic codes of length \(2p^{n}\). Finite Fields Appl. 5, 177–187 (1999).

  2. Arora S.K., Batra S., Cohen S.D., Pruthi M.: The primitive idempotents of a cyclic group algebra. South East Asian Bull. Math. 26, 549–557 (2002).

    Google Scholar 

  3. Bakshi G.K., Raka M.: Minimal cyclic codes of length \(p^{n}q\). Finite Fields Appl. 9, 432–448 (2003).

  4. Batra S., Arora S.K.: Minimal qudratic residue cyclic codes of length \(p^{n}\) (\(p\) odd prime). Korean J. Comput. Appl. Math. 8, 531–547 (2001).

  5. Batra S., Arora S.K.: Some cyclic codes of length \(2p^{n}\). Des. Codes Cryptogr. 61, 41–69 (2011).

  6. Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968).

  7. Brualdi R.A., Pless V.S.: Polyadic codes. Discret. Appl. Math. 25, 3–17 (1989).

  8. Camion P.: Global quadratic abelian codes. In: Longo G. (ed.) Information Theory, CISM Courses and Lectures, vol. 219. Springer, Wien (1975).

  9. Delsarte P.: Majority logic decodable codes derived from finite inversive planes. Inf. Control 18, 319–325 (1971).

    Google Scholar 

  10. Dodunekov S.M.: Residual codes. Plisca Stud. Math. Bulg. 2, 3–5 (1981).

  11. Dodunekov S.M., Bojilov A., van Zanten A.J.: Generalized residue codes, TR 2010-001. TiCC, Tilburg University. http://www.tilburguniversity.edu/research/institutes-and-research-groups/ticc/research-programs/cc/technical-reports.

  12. Dodunekov S.M., Bojilov A., van Zanten A.J.: Generalized residue codes and their idempotent generators, TR 2011-001. TiCC, Tilburg University. http://www.tilburguniversity.edu/research/institutes-and-research-groups/ticc/research-programs/cc/technical-reports.

  13. Ferraz R.A., Milies C.P.: Idempotents in group algebras and minimal abelian codes. Finite Fields Appl. 13, 382–393 (2007).

    Google Scholar 

  14. Huffman W.C.: The automorphism groups of the generalized quadratic residue codes. IEEE Trans. Inf. Theory 41, 378–386 (1995).

    Google Scholar 

  15. Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, vol. 84. Springer, New York (1980).

  16. Leon J.S., Masley J.M., Pless V.: Duadic codes. IEEE Trans. Inf. Theory 30, 709–714 (1984).

    Google Scholar 

  17. Lidl R.L., Niederreiter H.: Introduction to Finite Fields and Their Applications, revised edn. Cambridge University Press, Cambridge (1997).

  18. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977).

  19. Pless V.: Q-codes. J. Comb. Theory A 43, 258–276 (1986).

  20. Pless V.: Introduction to the Theory of Error-Correcting Codes, 2nd edn. Wiley Interscience, New York (1990).

  21. Pless V., Rushanan J.J.: Triadic codes. Linear Algebra Appl. 98, 415–433 (1988).

    Google Scholar 

  22. Pruthi M., Arora S.K.: Minimal codes of prime-power length. Finite Fields Appl. 3, 99–113 (1997).

    Google Scholar 

  23. Sharma A., Bakshi G.K., Raka M.: Polyadic codes of prime power length. Finite Fields Appl. 13, 1071–1085 (2007).

    Google Scholar 

  24. Smid M.H.M.: Duadic codes. IEEE Trans. Inf. Theory 33, 432–433 (1987).

    Google Scholar 

  25. van Lint J.H.: Coding Theory. Springer, New York (1971).

  26. van Lint J.H.: Generalized Quadratic Residue Codes. Lecture Notes. Department of Mathematics, Eindhoven University of Technology, Eindhoven (1992).

  27. van Lint J.H., MacWilliams F.J.: Generalized quadratic residue codes. IEEE Trans. Inf. Theory 24, 730–737 (1978).

    Google Scholar 

  28. van Zanten A.J., Bojilov A., Dodunekov S.M.: Idempotent generators of generalized residue codes. In: Proceedings of the Twelfth International Workshop of the Algebraic and Combinatorial Coding Theory (ACCT), Akademgorodok, Novosibirsk, pp. 304–309 (2010).

  29. van Zanten A.J., Bojilov A., Dodunekov S.M.: Idempotent generators of generalized and double generalized quadratic residue codes, TR 2011-002. TiCC, Tilburg University. http://www.tilburguniversity.edu/research/institutes-and-research-groups/ticc/research-programs/cc/technical-reports.

  30. Ward H.N.: Qudratic residue codes and symplectic groups. J. Algebra 29, 150–171 (1974).

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the referees for carefully reading the manuscript and for their suggestions which improved the readability of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. van Zanten.

Additional information

Communicated by G. Korchmaros.

Prof. Dr. S. M. Dodunekov sadly, and totally unexpectedly, passed away in August 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Zanten, A.J., Bojilov, A. & Dodunekov, S.M. Generalized residue and t-residue codes and their idempotent generators. Des. Codes Cryptogr. 75, 315–334 (2015). https://doi.org/10.1007/s10623-013-9905-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9905-5

Keywords

Mathematics Subject Classification

Navigation