Extremal properties of t-SEEDs and recursive constructions | Designs, Codes and Cryptography Skip to main content
Log in

Extremal properties of t-SEEDs and recursive constructions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A t-spontaneous emission error design, called t-SEED for short, is a combinatorial design introduced by Beth et al. (Des Codes Cryptogr 29:51–70, 2003) in relation to a quantum jump code. In this article, firstly, it is shown that an optimal t-SEED attaining a given upper bound is a large set of Steiner t-designs. Secondly, we present some recursive constructions of t-SEEDs. Moreover, an application to secret sharing scheme by utilizing the properties of a t-SEED is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alber G., Beth T., Charnes C., Delgado A., Grassl M., Mussinger M.: Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes. Phys. Rev. Lett. 86, 4402–4405 (2001).

    Google Scholar 

  2. Alber G., Beth T., Charnes C., Delgado A., Grassl M., Mussinger M.: Detected-jump-error-correcting quantum codes, quantum error designs and quantum computation. Phys. Rev. A 68, 012316 (2003).

    Google Scholar 

  3. Baranyai Z.: On the factorizations of the complete uniform hypergraph. Finite and infinite sets. Colloq. Math. Soc. Janos Bolyai, vol. 10, pp. 91–108. North-Holland, Amsterdam (1975)

  4. Blakley G.R.: Safeguarding cryptographic keys. AFIPS Conf. Proc. 48, 313–317 (1979).

  5. Beth T., Charnes C., Grassl M., Alber G., Delgado A., Mussinger M.: A new class of designs which protect against quantum jumps. Des. Codes Cryptogr. 29, 51–70 (2003).

    Google Scholar 

  6. Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A. 54, 1098–1105 (1996).

    Google Scholar 

  7. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).

    Google Scholar 

  8. Cayley A.: On the triadic arrangements of seven and fifteen things. Lond. Edinb. Dublin Philos. Mag. J. Sci. 37, 50–53 (1850).

    Google Scholar 

  9. Chouinard L.G.: Partitions of the 4-subsets of a 13-set into disjoint projective planes. Discret. Math. 45, 297–300 (1983).

    Google Scholar 

  10. Chen D., Stinson D.R.: Recent results on combinatorial constructions for threshold schemes. Australas. J. Comb. 1, 29–48 (1990).

    Google Scholar 

  11. Deng Y.P., Guo L.F., Liu M.L.: Constructions for Anonymous secret sharing schemes using combinatorial designs. Acta Math. Appl. Sin. Engl. Ser. 23(1), 67–78 (2007).

    Google Scholar 

  12. Ekert A., Macchiavello C.: Quantum error correction for communication. Phys. Rev. Lett. 77, 2585–2588 (1996).

    Google Scholar 

  13. Hartman A.: Halving the complete design. Ann. Discret. Math. 34, 207–224 (1987).

    Google Scholar 

  14. Jimbo M., Shiromoto K.: Quantum jump codes and related combinatorial designs. In: Crnkovic‘ D., Tonchev V. (eds.) Information Security, Coding Theory and Related Combinatorics, vol. 29, pp. 285–311. IOS Press, Amsterdam (2011).

  15. Khosrovshahi G.B., Tayfeh-Rezaie B.: Large sets of \(t\)-designs through partitionable sets: a survey. Discret. Math. 306, 2993–3004 (2006).

    Google Scholar 

  16. Lu J.X.: On large sets of disjoint Steiner triple systems I, II and III. J. Comb. Theory Ser. A 37, 140–182 (1983).

    Google Scholar 

  17. Lu J.X.: On large sets of disjoint Steiner triple systems IV, V and VI. J. Comb. Theory Ser. A 37, 136–192 (1984).

    Google Scholar 

  18. Mathon R.A.: Searching for spreads and packings. In: Hirschfeld J.W.P., Magliveras S.S., de Resmini M.J. (eds.) Geometry, Combinatorial Designs and Related Structures, London Math. Soc. Lecture Note Ser. (Spetses 1996) vol. 245, pp. 161–176. Cambridge University Press, Cambridge (1997).

  19. Miao Y.: A combinatorial characterization of regular anonymous perfect threshold schemes. Inf. Process. Lett. 85, 131–135 (2003).

    Google Scholar 

  20. Raghavarao D.: Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York (1971).

  21. Shamir A.: How to share a secret. Commun. ACM 22, 612–613 (1979).

    Google Scholar 

  22. Steane A.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).

    Google Scholar 

  23. Steane A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Google Scholar 

  24. Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995).

    Google Scholar 

  25. Stinson D.R., Vanstone S.A.: A combinatorial approach to threshold schemes. SIAM J. Discret. Math. 1, 230–237 (1988).

    Google Scholar 

  26. Schellenberg P.J., Stinson D.R.: Threshold schemes from combinatorial designs. J. Comb. Math. Comb. Comput. 5, 143–160 (1989).

    Google Scholar 

  27. Schreiber S.: Some balanced complete block designs. Israel J. Math. 18, 31–37 (1874).

    Google Scholar 

  28. Schreiber S.: Covering all triples on \(n\) marks by disjoint Steiner systems. J. Comb. Theory Ser. A 15, 347–350 (1973).

  29. Teirlinck L.: On the maximum number of disjoint triple systems. J. Geom. 12, 93–96 (1975).

    Google Scholar 

  30. Teirlinck L.: A completion of Lu’s determination of the spectrum of large sets of disjoint Steiner Triple systems. J. Comb. Theory Ser. A 57, 302–305 (1991).

    Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for the valuable comments, which was very helpful to improve the paper considerably. The work of M. Jimbo was supported in part by JSPS under Grant-in-Aid for Scientific Research (B)22340016 and Grant-in-Aid for Challenging Exploratory Research 22654031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiling Lin.

Additional information

Communicated by D. Jungnickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Jimbo, M. Extremal properties of t-SEEDs and recursive constructions. Des. Codes Cryptogr. 73, 805–823 (2014). https://doi.org/10.1007/s10623-013-9829-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9829-0

Keywords

Mathematics Subject Classification

Navigation