Abstract
A t-spontaneous emission error design, called t-SEED for short, is a combinatorial design introduced by Beth et al. (Des Codes Cryptogr 29:51–70, 2003) in relation to a quantum jump code. In this article, firstly, it is shown that an optimal t-SEED attaining a given upper bound is a large set of Steiner t-designs. Secondly, we present some recursive constructions of t-SEEDs. Moreover, an application to secret sharing scheme by utilizing the properties of a t-SEED is also discussed.
Similar content being viewed by others
References
Alber G., Beth T., Charnes C., Delgado A., Grassl M., Mussinger M.: Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes. Phys. Rev. Lett. 86, 4402–4405 (2001).
Alber G., Beth T., Charnes C., Delgado A., Grassl M., Mussinger M.: Detected-jump-error-correcting quantum codes, quantum error designs and quantum computation. Phys. Rev. A 68, 012316 (2003).
Baranyai Z.: On the factorizations of the complete uniform hypergraph. Finite and infinite sets. Colloq. Math. Soc. Janos Bolyai, vol. 10, pp. 91–108. North-Holland, Amsterdam (1975)
Blakley G.R.: Safeguarding cryptographic keys. AFIPS Conf. Proc. 48, 313–317 (1979).
Beth T., Charnes C., Grassl M., Alber G., Delgado A., Mussinger M.: A new class of designs which protect against quantum jumps. Des. Codes Cryptogr. 29, 51–70 (2003).
Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A. 54, 1098–1105 (1996).
Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).
Cayley A.: On the triadic arrangements of seven and fifteen things. Lond. Edinb. Dublin Philos. Mag. J. Sci. 37, 50–53 (1850).
Chouinard L.G.: Partitions of the 4-subsets of a 13-set into disjoint projective planes. Discret. Math. 45, 297–300 (1983).
Chen D., Stinson D.R.: Recent results on combinatorial constructions for threshold schemes. Australas. J. Comb. 1, 29–48 (1990).
Deng Y.P., Guo L.F., Liu M.L.: Constructions for Anonymous secret sharing schemes using combinatorial designs. Acta Math. Appl. Sin. Engl. Ser. 23(1), 67–78 (2007).
Ekert A., Macchiavello C.: Quantum error correction for communication. Phys. Rev. Lett. 77, 2585–2588 (1996).
Hartman A.: Halving the complete design. Ann. Discret. Math. 34, 207–224 (1987).
Jimbo M., Shiromoto K.: Quantum jump codes and related combinatorial designs. In: Crnkovic‘ D., Tonchev V. (eds.) Information Security, Coding Theory and Related Combinatorics, vol. 29, pp. 285–311. IOS Press, Amsterdam (2011).
Khosrovshahi G.B., Tayfeh-Rezaie B.: Large sets of \(t\)-designs through partitionable sets: a survey. Discret. Math. 306, 2993–3004 (2006).
Lu J.X.: On large sets of disjoint Steiner triple systems I, II and III. J. Comb. Theory Ser. A 37, 140–182 (1983).
Lu J.X.: On large sets of disjoint Steiner triple systems IV, V and VI. J. Comb. Theory Ser. A 37, 136–192 (1984).
Mathon R.A.: Searching for spreads and packings. In: Hirschfeld J.W.P., Magliveras S.S., de Resmini M.J. (eds.) Geometry, Combinatorial Designs and Related Structures, London Math. Soc. Lecture Note Ser. (Spetses 1996) vol. 245, pp. 161–176. Cambridge University Press, Cambridge (1997).
Miao Y.: A combinatorial characterization of regular anonymous perfect threshold schemes. Inf. Process. Lett. 85, 131–135 (2003).
Raghavarao D.: Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York (1971).
Shamir A.: How to share a secret. Commun. ACM 22, 612–613 (1979).
Steane A.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).
Steane A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).
Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995).
Stinson D.R., Vanstone S.A.: A combinatorial approach to threshold schemes. SIAM J. Discret. Math. 1, 230–237 (1988).
Schellenberg P.J., Stinson D.R.: Threshold schemes from combinatorial designs. J. Comb. Math. Comb. Comput. 5, 143–160 (1989).
Schreiber S.: Some balanced complete block designs. Israel J. Math. 18, 31–37 (1874).
Schreiber S.: Covering all triples on \(n\) marks by disjoint Steiner systems. J. Comb. Theory Ser. A 15, 347–350 (1973).
Teirlinck L.: On the maximum number of disjoint triple systems. J. Geom. 12, 93–96 (1975).
Teirlinck L.: A completion of Lu’s determination of the spectrum of large sets of disjoint Steiner Triple systems. J. Comb. Theory Ser. A 57, 302–305 (1991).
Acknowledgments
We would like to thank the anonymous reviewers for the valuable comments, which was very helpful to improve the paper considerably. The work of M. Jimbo was supported in part by JSPS under Grant-in-Aid for Scientific Research (B)22340016 and Grant-in-Aid for Challenging Exploratory Research 22654031.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D. Jungnickel.
Rights and permissions
About this article
Cite this article
Lin, Y., Jimbo, M. Extremal properties of t-SEEDs and recursive constructions. Des. Codes Cryptogr. 73, 805–823 (2014). https://doi.org/10.1007/s10623-013-9829-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-013-9829-0