New infinite families of hyperovals on $$\mathcal H (3,q^2), q$$ odd | Designs, Codes and Cryptography Skip to main content
Log in

New infinite families of hyperovals on \(\mathcal H (3,q^2), q\) odd

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Two new infinite families of hyperovals on the generalized quadrangle \(\mathcal H (3,q^2), q\) odd, are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buekenhout F., Hubaut X.: Locally polar spaces and related rank 3 groups. J. Algebra 45, 391–434 (1977).

    Google Scholar 

  2. Cameron P.J., Hughes D.R., Pasini A.: Extended generalized quadrangles. Geom. Dedic. 35, 193–228 (1990).

    Google Scholar 

  3. Cossidente A.: Hyperovals on \({\cal {H}}(3, q^2)\). J. Comb. Theory Ser. A 118, 1190–1195 (2011).

  4. Cossidente A., Ebert G.L.: Permutable polarities and a class of ovoids of the Hermitian surface. Eur. J. Comb. 25(7), 1059–1066 (2004).

    Google Scholar 

  5. Cossidente A., King O.H., Marino G.: Hyperovals of \({\cal {H}}(3, q^2)\), when \(q\) is even. J. Comb. Theory Ser. A 120(6), 1131–1140 (2013).

  6. Cossidente A., Marino G.: Singer action on \({\cal {H}}(3, q^2)\), \(q\) even. Preprint.

  7. De Bruyn B.: On hyperovals of polar spaces. Des. Codes Cryptogr. 56(2–3), 183–195 (2010).

    Google Scholar 

  8. Del Fra A., Ghinelli D., Payne S.E.: \((0, n)\)-sets in a generalized quadrangle, Combinatorics ’90 (Gaeta, 1990). Ann. Discret. Math. 52, 139–157 (1992).

  9. Makhnev A.A.: Extensions of \(GQ(4,2)\), the description of hyperovals. Discret. Math. Appl. 7(4), 419–435 (1997).

  10. Payne S.E., Thas J.A.: Finite Generalized Quadrangles. Research Notes in Mathematics 110. Pitman, London (1984).

  11. Segre B.: Forme e geometrie hermitiane con particolare riguardo al caso finito. Ann. Mat. Pura Appl. 70, 1–201 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pavese.

Additional information

Communicated by T. Penttila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossidente, A., Pavese, F. New infinite families of hyperovals on \(\mathcal H (3,q^2), q\) odd. Des. Codes Cryptogr. 73, 217–222 (2014). https://doi.org/10.1007/s10623-013-9818-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9818-3

Keywords

Mathematics Subject Classification (2010)

Navigation