On certain forms and quadrics related to symplectic dual polar spaces in characteristic 2 | Designs, Codes and Cryptography Skip to main content
Log in

On certain forms and quadrics related to symplectic dual polar spaces in characteristic 2

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let V be a 2n-dimensional vector space over a field \({\mathbb {F}}\) and ξ a non-degenerate alternating form defined on V. Let Δ be the building of type C n formed by the totally ξ-isotropic subspaces of V and, for 1 ≤ kn, let \({\mathcal {G}_k}\) and Δ k be the k-grassmannians of PG(V) and Δ, embedded in \({W_k=\wedge^kV}\) and in a subspace \({V_k\subseteq W_k}\) respectively, where \({{\rm dim}(V_k)={2n \choose k} - {2n \choose {k-2}}}\) . This paper is a continuation of Cardinali and Pasini (Des. Codes. Cryptogr., to appear). In Cardinali and Pasini (to appear), focusing on the case of k = n, we considered two forms α and β related to the notion of ‘being at non maximal distance’ in \({\mathcal {G}_n}\) and Δ n and, under the hypothesis that \({{\rm char}(\mathbb {F}) \neq 2}\) , we studied the subspaces of W n where α and β coincide or are opposite. In this paper we assume that \({{\rm char}(\mathbb {F}) = 2}\) . We determine which of the quadrics associated to α or β are preserved by the group \({G= {\rm Sp}(2n, \mathbb {F})}\) in its action on W n and we study the subspace \({\mathcal {D}}\) of W n formed by vectors v such that α(v, x) = β(v, x) for every \({x \in W_n}\) . Finally, we show how properties of \({\mathcal {D}}\) can be exploited to investigate the poset of G-invariant subspaces of V k for k = n − 2i and \({1\leq i \leq \lfloor n/2\rfloor}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamovich A.M.: The submodule lattice of Weyl modules for symplectic groups with fundamental highest weights. Mosc. Univ. Math. Bull 41, 6–9 (1986)

    MATH  Google Scholar 

  2. Baranov A.A., Suprunenko I.D.: Branching rules for modular fundamental representations of symplectic groups. Bull. Lond. Math. Soc 32, 409–420 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blok R.J.: The generating rank of the symplectic Grassmannians: hyperbolic and isotropic geometry. Eur. J. Combin 28, 1368–1394 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blok R.J.: Highest weight modules and polarized embeddings of shadow spaces. J. Algebr. Combin 34(1), 67–113 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blok R.J., Cardinali I., De Bruyn B.: On the nucleus of the Grassmann embedding of the symplectic dual polar space \({DSp(2n, \mathbb {F})}\) , char\({(\mathbb {F})=2}\) . Eur. J. Combin. 30, 468–472 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blok R.J., Cardinali I., De Bruyn B., Pasini A.: Polarized and homogeneous embeddings of dual polar spaces. J. Algebr. Combin. 30, 381–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blok R.J., Cardinali I., Pasini A.: On natural representation of the symplectic group. Bull. Belg. Math. Soc. Simon Stevin 18, 1–29 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Cardinali I., Lunardon G.: A geometric description of the spin-embedding of symplectic dual polar spaces of rank 3. J. Combin. Theory A 115(6), 1056–1064 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cardinali I., De Bruyn B., Pasini A.: Minimal full polarized embeddings of dual polar spaces. J. Algebr. Combin. 25, 7–23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardinali I., Pasini A.: On Weyl modules for the symplectic group. Innov. Incid. Geom. (to appear).

  11. Cardinali I., Pasini A.: Two forms related to the symplectic dual polar space in odd characteristic. Des. Codes Cryptogr. doi:10.1007/s10623-011-9545-6

  12. Cardinali I., Pasini A.: On a series of submodules for the symplectic group in characteristic 2 (submitted).

  13. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups. Clarendon, Oxford (1985)

    MATH  Google Scholar 

  14. De Bruyn B.: On the Grassmann modules for the symplectic groups. J. Algebr 324, 218–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hardy G.H., Wright E.M.: An Introduction to the Theory of Numbers 6th edn. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  16. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  17. Premet A.A., Suprunenko I.D.: The Weyl modules and the irreducible representations of the symplectic group with the fundamental highest weights. Commun. Algebr. 11, 1309–1342 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tits J.: Building of spherical type and finite BN-pairs. Lecture Notes in Mathematics. vol. 386. Springer, Berlin (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Cardinali.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardinali, I., Pasini, A. On certain forms and quadrics related to symplectic dual polar spaces in characteristic 2. Des. Codes Cryptogr. 68, 229–258 (2013). https://doi.org/10.1007/s10623-011-9602-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9602-1

Keywords

Mathematics Subject Classification (2010)

Navigation