Abstract
In this article, we study negacyclic self-dual codes of length n over a finite chain ring R when the characteristic p of the residue field \({\bar{R}}\) and the length n are relatively prime. We give necessary and sufficient conditions for the existence of (nontrivial) negacyclic self-dual codes over a finite chain ring. As an application, we construct negacyclic MDR self-dual codes over GR(p t, m) of length p m + 1.
Similar content being viewed by others
References
Berlekamp E.R.: Negacyclic codes for the Lee metric. In: Proc. Conf. Combinatorial Mathematics and Its Applications, Chapel Hill, NC, pp. 298–316 (1968).
Berlekamp E.R.: Algebraic Coding Theory. Revised edition, Aegean Park, Laguna Hills (1984).
Blackford T.: Negacyclic codes over \({\mathbb{Z}_4}\) of even length. IEEE Trans. Inform. Theory 49, 1417–1424 (2003)
Calderbank A.R., Sloane N.J.A.: Modular and p-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)
Dinh H.Q.: Negacyclic codes of length 2s over Galois rings. IEEE Trans. Inform. Theory 51, 4252–4262 (2005)
Dinh H.Q.: Complete distances of all negacyclic codes of length 2s over \({\mathbb{Z}_{2^{a}}}\). IEEE Trans. Inform. Theory 53, 147–161 (2007)
Dinh H.Q., López-Permouth S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50, 1728–1744 (2004)
Dougherty S.T., Ling S.: Cyclic codes over \({\mathbb{Z}_4}\) of even length. Des. Codes Cryptogr. 39, 127–153 (2006)
Dougherty S.T., Shiromoto K.: MDR codes over \({\mathbb{Z}_k}\). IEEE Trans. Inform. Theory 46, 265–269 (2000)
Dougherty S.T., Kim J.L., Kulosman H.: MDS codes over finite principal ideal rings. Des. Codes Cryptogr. 50, 77–92 (2009)
Dougherty S.T., Kim J.L., Liu H.: Constructions of self-dual codes over finite commutative chain rings. Int. J. Inform. Coding Theory 1, 171–190 (2010)
Hammons A.R. Jr., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_{4}}\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)
Kanwar P., López-Permouth S.R.: Cyclic codes over the integers modulo p m. Finite Fields Appl. 3, 334–352 (1997)
Krishna A., Sarwate D.V.: Pseudocyclic maximum distance separable codes. IEEE Trans. Inform. Theory 36, 880–884 (1990)
MacWilliams F.J., Sloan N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977)
McDonald B.R.: Finite Rings with Identity. Dekker, New York (1974)
Norton G.H., Sǎlǎgean A.: On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebra Eng. Com. Comp. 10, 489–506 (2000)
Norton G.H., Sǎlǎgean A.: On the Hamming distance of linear codes over a finite chain ring. IEEE Trans. Inform. Theory 46, 1060–1067 (2000)
Sǎlǎgean A.: Repeated-root cyclic and negacyclic codes over finite chain rings. Discrete Appl. Math. 154, 413–419 (2006)
Wan Z.: Cyclic codes over Galois rings. Algebra Colloq. 6, 291–304 (1999)
Wolfmann J.: Negacyclic and cyclic codes over \({\mathbb{Z}_4}\). IEEE Trans. Inform. Theory 45, 2527–2532 (1999)
Zhu S., Kai X.: Dual and self-dual negacyclic codes of even length over \({\mathbb{Z}_{2^{a}}}\). Dis. Math. 309, 2382–2391 (2009)
Zhu S., Kai X., Li P.: Negacyclic MDS codes over GR(2a, m). ISIT 2009, Seoul, Korea, June 28–July 3 (2009).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. Wolfmann.
Rights and permissions
About this article
Cite this article
Kai, X., Zhu, S. Negacyclic self-dual codes over finite chain rings. Des. Codes Cryptogr. 62, 161–174 (2012). https://doi.org/10.1007/s10623-011-9500-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-011-9500-6