Negacyclic self-dual codes over finite chain rings | Designs, Codes and Cryptography Skip to main content
Log in

Negacyclic self-dual codes over finite chain rings

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, we study negacyclic self-dual codes of length n over a finite chain ring R when the characteristic p of the residue field \({\bar{R}}\) and the length n are relatively prime. We give necessary and sufficient conditions for the existence of (nontrivial) negacyclic self-dual codes over a finite chain ring. As an application, we construct negacyclic MDR self-dual codes over GR(p t, m) of length p m + 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlekamp E.R.: Negacyclic codes for the Lee metric. In: Proc. Conf. Combinatorial Mathematics and Its Applications, Chapel Hill, NC, pp. 298–316 (1968).

  2. Berlekamp E.R.: Algebraic Coding Theory. Revised edition, Aegean Park, Laguna Hills (1984).

  3. Blackford T.: Negacyclic codes over \({\mathbb{Z}_4}\) of even length. IEEE Trans. Inform. Theory 49, 1417–1424 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calderbank A.R., Sloane N.J.A.: Modular and p-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dinh H.Q.: Negacyclic codes of length 2s over Galois rings. IEEE Trans. Inform. Theory 51, 4252–4262 (2005)

    Article  MathSciNet  Google Scholar 

  6. Dinh H.Q.: Complete distances of all negacyclic codes of length 2s over \({\mathbb{Z}_{2^{a}}}\). IEEE Trans. Inform. Theory 53, 147–161 (2007)

    Article  MathSciNet  Google Scholar 

  7. Dinh H.Q., López-Permouth S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50, 1728–1744 (2004)

    Article  MathSciNet  Google Scholar 

  8. Dougherty S.T., Ling S.: Cyclic codes over \({\mathbb{Z}_4}\) of even length. Des. Codes Cryptogr. 39, 127–153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dougherty S.T., Shiromoto K.: MDR codes over \({\mathbb{Z}_k}\). IEEE Trans. Inform. Theory 46, 265–269 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dougherty S.T., Kim J.L., Kulosman H.: MDS codes over finite principal ideal rings. Des. Codes Cryptogr. 50, 77–92 (2009)

    Article  MathSciNet  Google Scholar 

  11. Dougherty S.T., Kim J.L., Liu H.: Constructions of self-dual codes over finite commutative chain rings. Int. J. Inform. Coding Theory 1, 171–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hammons A.R. Jr., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_{4}}\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kanwar P., López-Permouth S.R.: Cyclic codes over the integers modulo p m. Finite Fields Appl. 3, 334–352 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krishna A., Sarwate D.V.: Pseudocyclic maximum distance separable codes. IEEE Trans. Inform. Theory 36, 880–884 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. MacWilliams F.J., Sloan N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  16. McDonald B.R.: Finite Rings with Identity. Dekker, New York (1974)

    MATH  Google Scholar 

  17. Norton G.H., Sǎlǎgean A.: On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebra Eng. Com. Comp. 10, 489–506 (2000)

    Article  MATH  Google Scholar 

  18. Norton G.H., Sǎlǎgean A.: On the Hamming distance of linear codes over a finite chain ring. IEEE Trans. Inform. Theory 46, 1060–1067 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sǎlǎgean A.: Repeated-root cyclic and negacyclic codes over finite chain rings. Discrete Appl. Math. 154, 413–419 (2006)

    Article  MathSciNet  Google Scholar 

  20. Wan Z.: Cyclic codes over Galois rings. Algebra Colloq. 6, 291–304 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Wolfmann J.: Negacyclic and cyclic codes over \({\mathbb{Z}_4}\). IEEE Trans. Inform. Theory 45, 2527–2532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu S., Kai X.: Dual and self-dual negacyclic codes of even length over \({\mathbb{Z}_{2^{a}}}\). Dis. Math. 309, 2382–2391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhu S., Kai X., Li P.: Negacyclic MDS codes over GR(2a, m). ISIT 2009, Seoul, Korea, June 28–July 3 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshan Kai.

Additional information

Communicated by J. Wolfmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kai, X., Zhu, S. Negacyclic self-dual codes over finite chain rings. Des. Codes Cryptogr. 62, 161–174 (2012). https://doi.org/10.1007/s10623-011-9500-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9500-6

Keywords

Mathematics Subject Classification (2000)

Navigation