Abstract
Some new examples of two-character sets with respect to planes of PG(3, q 2), q odd, are constructed. They arise from three-dimensional hyperbolic quadrics, from the geometry of an orthogonal polarity commuting with a unitary polarity. The last examples arise from the geometry of the unitary group PSU(3, 3) acting on the split Cayley hexagon H(2).
Similar content being viewed by others
References
Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)
Cooperstein B.N.: Maximal subgroups of G 2(2n). J. Algebra 70, 23–36 (1981)
Cossidente A., King O.H.: Maximal orthogonal subgroups of finite unitary groups. J. Group Theory 7, 447–462 (2004)
Cossidente A., Marino G.: Veronese embedding and two-character sets. Des. Codes Cryptogr. 42, 103–107 (2007)
Cossidente A., Penttila T.: Hemisystems on the Hermitian surface. J. Lond. Math. Soc. 72, 731–741 (2005)
Cossidente A., Van Maldeghem H.: The exceptional simple group G 2(q), q even and two-character sets. J. Comb. Theory. Ser A 114, 964–969 (2007)
Cossidente A., Durante N., Marino G., Penttila T., Siciliano A.: The geometry of some two-character sets. Des. Codes Cryptogr. 46(2), 231–241 (2008)
Delsarte Ph.: Weights of linear codes and strongly regular normed spaces. Discrete Math. 3, 47–64 (1972)
De Wispelaere A., Van Maldeghem H.: Codes from generalized hexagons. Des. Codes Cryptogr. 37, 435–448 (2005)
De Wispelaere A., Van Maldeghem H.: Some new two-character sets in PG(5, q 2) and a distance–2 ovoid in the generalized hexagon H(4). Discrete Math. 308(14), 2976–2983 (2008)
Dickson L.E.: A new system of simple groups. Mathematische Annalen 60, 137–150 (1905)
Dye R.H.: A quick geometrical proof that G 2(K) is maximal in PΩ7(K). Geom. Dedicata 26, 361–364 (1988)
Segre B.: Forme e geometrie Hermitiane con particolare riguardo al caso finito. Ann. Mat. Pura Appl. 70, 1–201 (1965)
Taylor D.E.: The geometry of the classical groups. Heldermann Verlag, Berlin (1992)
The Computational Algebra Group in the School of Mathematics and Statistics at the University of Sydney. The MAGMA Computational Algebra System. http://magma.maths.usyd.edu.au/magma/.
Tits J.: Sur certain classes d’espaces homogénes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8 (XXIX) (1955).
Van Maldeghem H.: Generalized polygons. In: Monographs in Mathematics, vol. 93. Birkhuser Verlag, Basel (1998).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Leo Storme.
Dedicated to the memory of András Gács (1969–2009).
Rights and permissions
About this article
Cite this article
Cossidente, A., King, O.H. Some two-character sets. Des. Codes Cryptogr. 56, 105–113 (2010). https://doi.org/10.1007/s10623-010-9394-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-010-9394-8