Abstract
In Mazzocca et al. (Des. Codes Cryptogr. 44:97–113, 2007), large minimal blocking sets in PG(3, q 2) and PG(4, q 2) have been constructed starting from ovoids of PG(3, q), Q(4, q) and Q(6, q). Some of these can be embedded in a Hermitian variety as maximal partial ovoids. In this paper, the geometric conditions assuring these embeddings are established.
Similar content being viewed by others
References
André J.: Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z. 60, 156–186 (1954)
Ball S.: On ovoids of O(5, q). Adv. Geom. 4(1), 1–7 (2004)
Ball S., Govaerts P., Storme L.: On ovoids of parabolic quadrics. Des. Codes Cryptogr. 38(1), 131–145 (2006)
Barlotti A., Cofman J.: Finite sperner spaces constructed from projective and affine spaces. Abh. Math. Semin. Univ. Hamb. 40, 231–241 (1974)
Bruck R.H., Bose R.C.: The construction of translation planes from projective spaces. J. Algebra. 1, 85–102 (1964)
Bruen A.A., Thas J.A.: Hyperplane coverings and blocking Sets. Math. Z. 181, 407–409 (1982)
Buekenhout F.: Existence of unitals in finite translation planes of order q 2 with kernel of order q. Geom. Dedicata. 5, 189–194 (1976)
De Beule J., Klein A., Metsch K., Storme L.: Partial ovoids and partial spreads of classical finite polar spaces. Serdica Math. J. 34(4), 689–714 (2008)
Kantor W.M.: Ovoids and translation planes. Canad. J. Math. 34, 1195–1207 (1982)
Lunardon G.: Blocking sets and semifields. J. Comb. Theory A. 113(6), 1172–1188 (2006)
Mazzocca F., Polverino O.: Blocking sets in PG(2, q n) from cones of PG(2n, q). J. Algebraic Combin. 24(1), 61–81 (2006)
MazzoccaF. Polverino O., Storme L.: Blocking sets in PG(r, q n). Des. Codes Cryptogr. 44, 97–113 (2007)
Metsch K.: A note on Buekenhout–Metz unitals. In: J.W.P. Hirschfeld et al.(eds.) Geometry, combinatorial designs and related structures. Proceedings of the first Pythagorean conference, Island of Spetses, Greece, June 1–7, 1996. London Mathematical Society Lecture Note Series, vol. 245, pp. 177–180. Cambridge University Press, Cambridge (1997).
Metz K.: On a class of unitals. Geom. Dedicata 8, 125–126 (1979)
Segre B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. 64, 1–76 (1964)
Szőnyi T., Cossidente A., Gács A., Mengyán C., Siciliano A., Weiner Zs.: On large minimal blocking sets in PG(2, q). J. Comb. Des. 13, 25–41 (2005)
Thas J.A.: Semi–partial geometries and spreads of classical polar spaces. J. Comb. Theory Ser. A. 35, 58–66 (1983)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Leo Storme.
Dedicated to the memory of András Gács (1969–2009).
Rights and permissions
About this article
Cite this article
Marino, G., Polverino, O. Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties. Des. Codes Cryptogr. 56, 115–130 (2010). https://doi.org/10.1007/s10623-010-9390-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-010-9390-z