Abstract
Let p be a prime and let b be a positive integer. If a (v, k, λ, n) difference set D of order n = p b exists in an abelian group with cyclic Sylow p-subgroup S, then \({p\in\{2,3\}}\) and |S| = p. Furthermore, either p = 2 and v ≡ λ ≡ 2 (mod 4) or the parameters of D belong to one of four families explicitly determined in our main theorem.
Similar content being viewed by others
References
Baumert L.D.: Cyclic difference sets. Springer Lecture Notes, vol. 182. Springer, Heidelberg (1971)
Beth T., Jungnickel D., Lenz H.: Design theory, 2nd edn. Cambridge University Press, Cambridge (1999)
Jungnickel D.: Difference sets. In: Dinitz, J.H., Stinson, D.R. (eds) Contemporary design theory: a collection of surveys, Wiley, New York (1992)
Jungnickel D., Schmidt B. et al.: Difference sets: an update. In: Hirschfeld, J.W.P. (eds) Geometry, combinatorial designs and related structures. Proceeding of the first Pythagorean conference, pp. 89–112. Cambridge University Press, Cambridge (1997)
Lander E.S.: Symmetric designs: an algebraic approach London Mathematical Society Lecture Notes, vol. 75. Cambridge University Press, Cambridge (1983)
Leung K.H., Ma S.L., Schmidt B.: Nonexistence of abelian difference sets: Lander’s conjecture for prime power orders. Trans. Am. Math. Soc. 356, 4343–4358 (2004)
Leung K.H., Schmidt B.: The field descent method. Des. Codes Cryptogr. 36, 171–188 (2005)
Pott A.: Finite geometry and character theory. Springer Lecture Notes, vol. 1601. Springer, Heidelberg (1995)
Schützenberger M.P.: A nonexistence theorem for an infinite family of symmetrical block designs. Ann. Eugen. 14, 286–287 (1949)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Alexander Pott.
Rights and permissions
About this article
Cite this article
Leung, K.H., Ma, S.L. & Schmidt, B. On Lander’s conjecture for difference sets whose order is a power of 2 or 3. Des. Codes Cryptogr. 56, 79–84 (2010). https://doi.org/10.1007/s10623-009-9344-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-009-9344-5