On Lander’s conjecture for difference sets whose order is a power of 2 or 3 | Designs, Codes and Cryptography
Skip to main content

On Lander’s conjecture for difference sets whose order is a power of 2 or 3

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let p be a prime and let b be a positive integer. If a (v, k, λ, n) difference set D of order n = p b exists in an abelian group with cyclic Sylow p-subgroup S, then \({p\in\{2,3\}}\) and |S| = p. Furthermore, either p = 2 and vλ ≡ 2 (mod 4) or the parameters of D belong to one of four families explicitly determined in our main theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumert L.D.: Cyclic difference sets. Springer Lecture Notes, vol. 182. Springer, Heidelberg (1971)

    Google Scholar 

  2. Beth T., Jungnickel D., Lenz H.: Design theory, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Jungnickel D.: Difference sets. In: Dinitz, J.H., Stinson, D.R. (eds) Contemporary design theory: a collection of surveys, Wiley, New York (1992)

    Google Scholar 

  4. Jungnickel D., Schmidt B. et al.: Difference sets: an update. In: Hirschfeld, J.W.P. (eds) Geometry, combinatorial designs and related structures. Proceeding of the first Pythagorean conference, pp. 89–112. Cambridge University Press, Cambridge (1997)

    Chapter  Google Scholar 

  5. Lander E.S.: Symmetric designs: an algebraic approach London Mathematical Society Lecture Notes, vol. 75. Cambridge University Press, Cambridge (1983)

    Book  Google Scholar 

  6. Leung K.H., Ma S.L., Schmidt B.: Nonexistence of abelian difference sets: Lander’s conjecture for prime power orders. Trans. Am. Math. Soc. 356, 4343–4358 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Leung K.H., Schmidt B.: The field descent method. Des. Codes Cryptogr. 36, 171–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pott A.: Finite geometry and character theory. Springer Lecture Notes, vol. 1601. Springer, Heidelberg (1995)

    Google Scholar 

  9. Schützenberger M.P.: A nonexistence theorem for an infinite family of symmetrical block designs. Ann. Eugen. 14, 286–287 (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schmidt.

Additional information

Communicated by Alexander Pott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, K.H., Ma, S.L. & Schmidt, B. On Lander’s conjecture for difference sets whose order is a power of 2 or 3. Des. Codes Cryptogr. 56, 79–84 (2010). https://doi.org/10.1007/s10623-009-9344-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9344-5

Keywords

Mathematics Subject Classification (2000)