The classical 1-system of Q −(7, q) and two-character sets | Designs, Codes and Cryptography Skip to main content
Log in

The classical 1-system of Q (7, q) and two-character sets

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We will show that associated with the classical 1-system of the elliptic quadric Q (7, q) are certain infinite families of two-character sets with respect to hyperplanes, and partial ovoids of Q +(15, q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. London Math. Soc. 18, 97–122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985)

    MATH  Google Scholar 

  3. Cossidente A., King O.H.: Twisted tensor product group embeddings and complete partial ovoids on quadrics in PG(2t−1, q). J. Algebra 273(2), 854–868 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cossidente A., King O.H.: Maximal subgroups of finite orthogonal groups stabilizing spreads of lines. Comm. Algebra 34(12), 4291–4309 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. De Winter S., Thas J.A.: On semi-pseudo-ovoids. J. Algebraic Combin. 22(2), 139–149 (2004)

    Article  Google Scholar 

  6. Delsarte Ph.: Weights of linear codes and strongly regular normed spaces. Discrete Math. 3, 47–64 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dye R.H.: Partitions and their stabilizers for line complexes and quadrics. Ann. Mat. Pura Appl. 114(4), 173–194 (1977)

    MATH  MathSciNet  Google Scholar 

  8. Ebert G.L.: Partitioning projective geometries into caps. Canad. J. Math. 37, 1163–1175 (1985)

    MATH  MathSciNet  Google Scholar 

  9. Kantor W.M., Liebler R.: The rank 3 permutation representations of the finite classical groups. Trans. Amer. Math. Soc. 271, 1–71 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Luyckx D.: m–systems of finite classical polar spaces. Ph.D. Thesis, Ghent University (2002).

  11. Luyckx D., Thas J.A.: The uniqueness of the 1-system of Q (7, q), q odd. J. Combin. Theory Ser. A 98(2), 253–267 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Luyckx D., Thas J.A.: The uniqueness of the 1-system of Q (7, q), q even. Discrete Math. 294, 133–138 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shult E.E., Thas J.A.: m-systems of polar space. J. Combin. Theory Ser. A 68, 184–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cossidente.

Additional information

Communicated by Juergen Bierbrauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossidente, A. The classical 1-system of Q (7, q) and two-character sets. Des. Codes Cryptogr. 54, 1–9 (2010). https://doi.org/10.1007/s10623-009-9300-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9300-4

Keywords

Mathematics Subject Classifications (2000)

Navigation