A note on the crosscorrelation of maximal length FCSR sequences | Designs, Codes and Cryptography Skip to main content
Log in

A note on the crosscorrelation of maximal length FCSR sequences

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this note it is shown that if the connection integers of two maximal length FCSR sequences have a common prime factor, then any crosscorrelation between them can be converted into some autocorrelation of the sequence with smaller period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klapper A., Goresky M.: 2-Adic shift registers. In: Fast Software Encryption, Cambridge Security Workshop. Lecture Notes in Computer Science, vol. 809, pp. 174–178. Springer-Verlag, New York (1993).

  2. Klapper A., Goresky M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10, 111–147 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Qi W.F., Xu H.: Partial period distribution of FCSR sequences. IEEE Trans. Inform. Theory 49(3), 761–765 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Seo C., Lee S., Sung Y., Han K., Kim S.: A lower bound on the linear span of an FCSR. IEEE Trans. Inform. Theory 46(2), 691–693 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goresky M., Klapper A.: Arithmetic crosscorrelations of feedback with carry shift register sequences. IEEE Trans. Inform. Theory 43(4), 1342–1345 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xu H., Qi W.F.: Autocorrelations of maximum period FCSR sequences. SIAM J. Discrete Math. 20(3), 568–577 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Arnault F., Berger T.P.: Design and properties of a new pseudorandom generator based on a filtered FCSR automaton. IEEE Trans. Inform. Theory 54(11), 1374–1383 (2005)

    Google Scholar 

  8. Arnault F., Berger T.P., Lauradoux C.: Update on F-FSCR stream cipher, ECRYPT Stream Cipher Project Report 2006/025 (2006) http://www.ecrypt.eu.org/stream.

  9. Dai Z.D.: Binary sequences derived from ML-sequences over rings I: periods and minimal polynomials. J. Cryptol. 5(4), 193–207 (1992)

    Article  MATH  Google Scholar 

  10. Huang M.Q., Dai Z.D.: Projective maps of linear recurring sequences with maximal p-adic periods. Fibonacci Quart. 30(2), 139–143 (1992)

    MATH  MathSciNet  Google Scholar 

  11. Zhu X.Y., Qi W.F.: Compression mappings on primitive sequences over \({\mathbf{Z}/(p^{e})}\) . IEEE Trans. Inform. Theory 50(10), 2442–2448 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Feng Qi.

Additional information

Communicated by H. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, T., Qi, WF. A note on the crosscorrelation of maximal length FCSR sequences. Des. Codes Cryptogr. 51, 1–8 (2009). https://doi.org/10.1007/s10623-008-9238-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-008-9238-y

Keywords

Mathematics Subject Classification (2000)

Navigation