The Automorphism Group of Plane Algebraic Curves with Singer Automorphisms | Designs, Codes and Cryptography Skip to main content
Log in

The Automorphism Group of Plane Algebraic Curves with Singer Automorphisms

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The main result in Cossidente and Siciliano (J. Number Theory, Vol. 99 (2003) pp. 373–382) states that if a Singer subgroup of PGL(3,q) is an automorphism group of a projective, geometric irreducible, non-singular plane algebraic curve \(\mathcal{X}\) then either \(\deg(\mathcal{X})=q+2\) or \(\deg(\mathcal {X})\ge q^2+q+1\). In the former case \(\mathcal{X}\) is projectively equivalent to the curve \(\mathcal{X}_q\) with equation Xq+1Y+Yq+1+X=0 studied by Pellikaan. Furthermore, the curve \(\mathcal{X}_q\) has a very nice property from Finite Geometry point of view: apart from the three distinguished points fixed by the Singer subgroup, the set of its \(\mathbb{F}_{{q}^{3}}\)-rational points can be partitioned into finite projective planes \(P^{2}(\mathbb{F}_{q})\). In this paper, the full automorphism group of such curves is determined. It turns out that \(Aut(\mathcal {X}_q)\) is the normalizer of a Singer group in \(PGL(3,\mathbb{F}_{q})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cossidente A. Siciliano (2003) ArticleTitlePlane algebraic curves with Singer automorphisms J. Number Theory 99 373–382 Occurrence Handle10.1016/S0022-314X(02)00070-7 Occurrence Handle2004c:11106

    Article  MathSciNet  Google Scholar 

  2. N. D. Elkies (1999) The Klein Quartic in Number Theory Cambridge Univ. Press Cambridge

    Google Scholar 

  3. R.W. Hartley (1926) ArticleTitleDetermination of the ternary collineation groups whose coefficients lie in the GF(2n) Ann. Math. 27 140–158 Occurrence Handle1502720

    MathSciNet  Google Scholar 

  4. J. P. Hansen, Deligne-Lusztig varieties and group codes, Coding Theory and Algebraic Geometry (Luminy, 1991), 63–81, Lecture Notes in Math., 1518, Springer, Berlin, (1992).

  5. H.-W. Henn (1978) ArticleTitleFunktionenkörper mit grosser Automorphismengruppen J. Reine Angew. Math. 172 96–115 Occurrence Handle80a:14012

    MathSciNet  Google Scholar 

  6. J. W. P. Hirschfeld (1998) Projective Geometries Over Finite Fields Oxford Univerity Press Oxford

    Google Scholar 

  7. B. Huppert (1967) Endliche Gruppen I Springer Berlin

    Google Scholar 

  8. A. Hurwitz (1893) ArticleTitleÜber algebraische Gebilde mit eindeutigen Transformationen in sich Math. Ann. 41 403–442 Occurrence Handle24.0380 Occurrence Handle1510753

    MATH  MathSciNet  Google Scholar 

  9. H. H. Mitchell (1911) ArticleTitleDetermination of the ordinary and modular ternary groups Trans. Am. Math. Soc. 12 207–242 Occurrence Handle42.0161

    MATH  Google Scholar 

  10. R. Pellikaan (1998) The Klein quartic, the Fano plane and curves representing designs A. Vardy (Eds) Codes, Curves and Signals: Common Threads in Communications Kluwer Academic Publisher Dordrecht 9–20

    Google Scholar 

  11. B. Segre (1933) ArticleTitleSulle curve algebriche che ammettono come trasformata razionale una curva piana dello stesso ordine, priva di punti multipli Math. Ann. 109 1–3 Occurrence Handle0007.36301 Occurrence Handle1512875

    MATH  MathSciNet  Google Scholar 

  12. H. Stichtenoth (1973) ArticleTitleÜber die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharacteristik I, II Archiv Math. 24 527–544 Occurrence Handle0282.14006 Occurrence Handle49 #2749

    MATH  MathSciNet  Google Scholar 

  13. K. O. Stöhr J. F. Voloch (1986) ArticleTitleWeierstrass points and curves over finite fields Proc. London Math. Soc. 52 1–19 Occurrence Handle87b:14010

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Siciliano.

Additional information

Communicated by: J. Hirschfield

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossidente, A., Siciliano, A. The Automorphism Group of Plane Algebraic Curves with Singer Automorphisms. Des Codes Crypt 39, 33–37 (2006). https://doi.org/10.1007/s10623-005-2153-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-005-2153-6

Keywords

AMS Classification

Navigation