Abstract
The main result in Cossidente and Siciliano (J. Number Theory, Vol. 99 (2003) pp. 373–382) states that if a Singer subgroup of PGL(3,q) is an automorphism group of a projective, geometric irreducible, non-singular plane algebraic curve \(\mathcal{X}\) then either \(\deg(\mathcal{X})=q+2\) or \(\deg(\mathcal {X})\ge q^2+q+1\). In the former case \(\mathcal{X}\) is projectively equivalent to the curve \(\mathcal{X}_q\) with equation Xq+1Y+Yq+1+X=0 studied by Pellikaan. Furthermore, the curve \(\mathcal{X}_q\) has a very nice property from Finite Geometry point of view: apart from the three distinguished points fixed by the Singer subgroup, the set of its \(\mathbb{F}_{{q}^{3}}\)-rational points can be partitioned into finite projective planes \(P^{2}(\mathbb{F}_{q})\). In this paper, the full automorphism group of such curves is determined. It turns out that \(Aut(\mathcal {X}_q)\) is the normalizer of a Singer group in \(PGL(3,\mathbb{F}_{q})\).
Similar content being viewed by others
References
A. Cossidente A. Siciliano (2003) ArticleTitlePlane algebraic curves with Singer automorphisms J. Number Theory 99 373–382 Occurrence Handle10.1016/S0022-314X(02)00070-7 Occurrence Handle2004c:11106
N. D. Elkies (1999) The Klein Quartic in Number Theory Cambridge Univ. Press Cambridge
R.W. Hartley (1926) ArticleTitleDetermination of the ternary collineation groups whose coefficients lie in the GF(2n) Ann. Math. 27 140–158 Occurrence Handle1502720
J. P. Hansen, Deligne-Lusztig varieties and group codes, Coding Theory and Algebraic Geometry (Luminy, 1991), 63–81, Lecture Notes in Math., 1518, Springer, Berlin, (1992).
H.-W. Henn (1978) ArticleTitleFunktionenkörper mit grosser Automorphismengruppen J. Reine Angew. Math. 172 96–115 Occurrence Handle80a:14012
J. W. P. Hirschfeld (1998) Projective Geometries Over Finite Fields Oxford Univerity Press Oxford
B. Huppert (1967) Endliche Gruppen I Springer Berlin
A. Hurwitz (1893) ArticleTitleÜber algebraische Gebilde mit eindeutigen Transformationen in sich Math. Ann. 41 403–442 Occurrence Handle24.0380 Occurrence Handle1510753
H. H. Mitchell (1911) ArticleTitleDetermination of the ordinary and modular ternary groups Trans. Am. Math. Soc. 12 207–242 Occurrence Handle42.0161
R. Pellikaan (1998) The Klein quartic, the Fano plane and curves representing designs A. Vardy (Eds) Codes, Curves and Signals: Common Threads in Communications Kluwer Academic Publisher Dordrecht 9–20
B. Segre (1933) ArticleTitleSulle curve algebriche che ammettono come trasformata razionale una curva piana dello stesso ordine, priva di punti multipli Math. Ann. 109 1–3 Occurrence Handle0007.36301 Occurrence Handle1512875
H. Stichtenoth (1973) ArticleTitleÜber die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharacteristik I, II Archiv Math. 24 527–544 Occurrence Handle0282.14006 Occurrence Handle49 #2749
K. O. Stöhr J. F. Voloch (1986) ArticleTitleWeierstrass points and curves over finite fields Proc. London Math. Soc. 52 1–19 Occurrence Handle87b:14010
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: J. Hirschfield
Rights and permissions
About this article
Cite this article
Cossidente, A., Siciliano, A. The Automorphism Group of Plane Algebraic Curves with Singer Automorphisms. Des Codes Crypt 39, 33–37 (2006). https://doi.org/10.1007/s10623-005-2153-6
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10623-005-2153-6