Abstract
The rank of a q-ary code C is the dimension of the subspace spanned by C. The kernel of a q-ary code C of length n can be defined as the set of all translations leaving C invariant. Some relations between the rank and the dimension of the kernel of q-ary 1-perfect codes, over \(\mathbb{F}_{q} = GF(q)\) as well as over the prime field \(\mathbb{F}_{p}\), are established. Q-ary 1-perfect codes of length n=(qm − 1)/(q − 1) with different kernel dimensions using switching constructions are constructed and some upper and lower bounds for the dimension of the kernel, once the rank is given, are established.
Similar content being viewed by others
References
S. V. Avgustinovich and F. I. Solov’eva, On projections of perfect binary codes, In Proceedings of the 7th Joint Swedish-Russian International Workshop on Information Theory, St. Petersburg, Russia (1995) pp. 25–26
S.V. Avgustinovich F.I. Solov’eva (1996) ArticleTitleOn non-systematic perfect binary codes Problems of Information Transmission. 32 IssueID3 258–261
S.V. Avgustinovich F.I. Solov’eva O. Heden (2003) ArticleTitleOn the ranks and kernels problem of perfect codes Problems of Information Transmission. 39 IssueID4 30–34
H. Bauer B. Ganter F. Hergert (1983) ArticleTitleAlgebraic techniques for nonlinear codes Combinatorica. 3 21–33
I.F. Blake R.C. Mullin (1975) The Mathematical Theory of Coding Academic Press New York
G. Cohen I. Honkala S. Litsyn A. Lobstein (1997) Covering Codes North-Holland Amsterdam
T. Etzion A. Vardy (1994) ArticleTitlePerfect binary codes: constructions, properties, and enumeration IEEE Transactions on Information Theory. 40 754–763 Occurrence Handle10.1109/18.335887
T. Etzion A. Vardy (1998) ArticleTitleOn perfect codes and tilings: problems and solutions SIAM Journal of Discrete Mathematics. 11 IssueID2 205–223 Occurrence Handle10.1137/S0895480196309171
T. Etzion (1996) ArticleTitleNonequivalent q-ary perfect codes SIAM Journal of Discrete Mathematics. 9 IssueID3 413–423 Occurrence Handle10.1137/S0895480194277903
F.I. MacWilliams N.J. Sloane (1977) The Theory of Error-Correcting Codes North-Holland New York
M. LeVan, Designs and Codes, Ph.D. Thesis, Auburn Univesity (1995)
B. Lindström (1969) ArticleTitleOn group and nongroup perfect codes in q symbols Mathematical Scandinavian. 25 149–158
K.T. Phelps M. Le ParticleVan (1995) ArticleTitleKernels of nonlinear Hamming codes Designs, Codes and Cryptography. 6 247–257
K. T. Phelps M. LeVan (1999) ArticleTitleSwitching equivalence classes of perfect codes Designs, Codes and Cryptography 16 179–184
K.T. Phelps M. Villanueva (2002) ArticleTitleRanks of q-ary 1-perfect codes Designs, Codes and Cryptography. 27 139–144
K.T. Phelps M. Villanueva (2002) ArticleTitleOn perfect codes: rank and kernel Designs, Codes and Cryptography. 27 183–194
K. T. Phelps, J. Rifà and M. Villanueva, The switching construction and kernels of q-ary 1-perfect codes, In Proceedings of the ACCT-VIII, September 9–14, St. Petersburg, Russia (2002) pp. 222–225
K. T. Phelps, J. Rifà and M. Villanueva, Kernels of q-ary 1-perfect codes, In Proceedings of the Workshop on Coding and Cryptography (WCC), March 24–28, Versailles, France (2003) pp. 375–382
G.S. Shapiro D.L. Slotnik (1959) ArticleTitleOn the mathematical theory of error correcting codes IBM Journal of Research and Development. 3 IssueID1 25–34
J. Schönheim (1968) ArticleTitleOn linear and nonlinear single-error-correcting q-ary perfect codes Information and Control. 12 23–26 Occurrence Handle10.1016/S0019-9958(68)90167-8
J.L. Vasil’ev (1963) ArticleTitleOn nongroup close-packed codes Problemy Kibernetiki. 8 337–339
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: I.F. Blake
Rights and permissions
About this article
Cite this article
Phelps, K.T., Rifà, J. & Villanueva, M. Kernels and p-Kernels of pr-ary 1-Perfect Codes. Des Codes Crypt 37, 243–261 (2005). https://doi.org/10.1007/s10623-004-3989-x
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10623-004-3989-x