Kernels and p-Kernels of p r -ary 1-Perfect Codes | Designs, Codes and Cryptography Skip to main content
Log in

Kernels and p-Kernels of pr-ary 1-Perfect Codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The rank of a q-ary code C is the dimension of the subspace spanned by C. The kernel of a q-ary code C of length n can be defined as the set of all translations leaving C invariant. Some relations between the rank and the dimension of the kernel of q-ary 1-perfect codes, over \(\mathbb{F}_{q} = GF(q)\) as well as over the prime field \(\mathbb{F}_{p}\), are established. Q-ary 1-perfect codes of length n=(qm − 1)/(q − 1) with different kernel dimensions using switching constructions are constructed and some upper and lower bounds for the dimension of the kernel, once the rank is given, are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. V. Avgustinovich and F. I. Solov’eva, On projections of perfect binary codes, In Proceedings of the 7th Joint Swedish-Russian International Workshop on Information Theory, St. Petersburg, Russia (1995) pp. 25–26

  • S.V. Avgustinovich F.I. Solov’eva (1996) ArticleTitleOn non-systematic perfect binary codes Problems of Information Transmission. 32 IssueID3 258–261

    Google Scholar 

  • S.V. Avgustinovich F.I. Solov’eva O. Heden (2003) ArticleTitleOn the ranks and kernels problem of perfect codes Problems of Information Transmission. 39 IssueID4 30–34

    Google Scholar 

  • H. Bauer B. Ganter F. Hergert (1983) ArticleTitleAlgebraic techniques for nonlinear codes Combinatorica. 3 21–33

    Google Scholar 

  • I.F. Blake R.C. Mullin (1975) The Mathematical Theory of Coding Academic Press New York

    Google Scholar 

  • G. Cohen I. Honkala S. Litsyn A. Lobstein (1997) Covering Codes North-Holland Amsterdam

    Google Scholar 

  • T. Etzion A. Vardy (1994) ArticleTitlePerfect binary codes: constructions, properties, and enumeration IEEE Transactions on Information Theory. 40 754–763 Occurrence Handle10.1109/18.335887

    Article  Google Scholar 

  • T. Etzion A. Vardy (1998) ArticleTitleOn perfect codes and tilings: problems and solutions SIAM Journal of Discrete Mathematics. 11 IssueID2 205–223 Occurrence Handle10.1137/S0895480196309171

    Article  Google Scholar 

  • T. Etzion (1996) ArticleTitleNonequivalent q-ary perfect codes SIAM Journal of Discrete Mathematics. 9 IssueID3 413–423 Occurrence Handle10.1137/S0895480194277903

    Article  Google Scholar 

  • F.I. MacWilliams N.J. Sloane (1977) The Theory of Error-Correcting Codes North-Holland New York

    Google Scholar 

  • M. LeVan, Designs and Codes, Ph.D. Thesis, Auburn Univesity (1995)

  • B. Lindström (1969) ArticleTitleOn group and nongroup perfect codes in q symbols Mathematical Scandinavian. 25 149–158

    Google Scholar 

  • K.T. Phelps M. Le ParticleVan (1995) ArticleTitleKernels of nonlinear Hamming codes Designs, Codes and Cryptography. 6 247–257

    Google Scholar 

  • K. T. Phelps M. LeVan (1999) ArticleTitleSwitching equivalence classes of perfect codes Designs, Codes and Cryptography 16 179–184

    Google Scholar 

  • K.T. Phelps M. Villanueva (2002) ArticleTitleRanks of q-ary 1-perfect codes Designs, Codes and Cryptography. 27 139–144

    Google Scholar 

  • K.T. Phelps M. Villanueva (2002) ArticleTitleOn perfect codes: rank and kernel Designs, Codes and Cryptography. 27 183–194

    Google Scholar 

  • K. T. Phelps, J. Rifà and M. Villanueva, The switching construction and kernels of q-ary 1-perfect codes, In Proceedings of the ACCT-VIII, September 9–14, St. Petersburg, Russia (2002) pp. 222–225

  • K. T. Phelps, J. Rifà and M. Villanueva, Kernels of q-ary 1-perfect codes, In Proceedings of the Workshop on Coding and Cryptography (WCC), March 24–28, Versailles, France (2003) pp. 375–382

  • G.S. Shapiro D.L. Slotnik (1959) ArticleTitleOn the mathematical theory of error correcting codes IBM Journal of Research and Development. 3 IssueID1 25–34

    Google Scholar 

  • J. Schönheim (1968) ArticleTitleOn linear and nonlinear single-error-correcting q-ary perfect codes Information and Control. 12 23–26 Occurrence Handle10.1016/S0019-9958(68)90167-8

    Article  Google Scholar 

  • J.L. Vasil’ev (1963) ArticleTitleOn nongroup close-packed codes Problemy Kibernetiki. 8 337–339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Villanueva.

Additional information

Communicated by: I.F. Blake

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phelps, K.T., Rifà, J. & Villanueva, M. Kernels and p-Kernels of pr-ary 1-Perfect Codes. Des Codes Crypt 37, 243–261 (2005). https://doi.org/10.1007/s10623-004-3989-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-004-3989-x

Keywords

Navigation