Nonexistence of [n, 5, d] q Codes Attaining the Griesmer Bound for q4 −2q2 −2q+1 ≤ d≤ q4−2q2 −q | Designs, Codes and Cryptography Skip to main content
Log in

Nonexistence of [n, 5, d] q Codes Attaining the Griesmer Bound for q4 −2q2 −2q+1 ≤ dq4−2q2q

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We prove that there does not exist a [q4+q3q2−3q−1, 5, q4−2q2−2q+1] q code over the finite field \(\mathbb{F}_q\) for q≥ 5. Using this, we prove that there does not exist a [g q (5, d), 5, d] q code with q4 −2q2 −2q +1 ≤ dq4 −2q2q for q≥ 5, where g q (k,d) denotes the Griesmer bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bruen (1992) ArticleTitlePolynomial multiplicities over finite fields and intersection sets Journal of Combinatorial Theory, Series A 60 19–33

    Google Scholar 

  2. N. Hamada (1993) ArticleTitleA characterization of some [n, k, d ; q] codes meeting the Griesmer bound using minihyper in a finite projective geometry Discrete Mathematics 116 229–268 Occurrence Handle10.1016/0012-365X(93)90404-H

    Article  Google Scholar 

  3. N. Hamada (1993) ArticleTitleA survey of recent work on characterization of minihypers in PG(t,q) and nonbinary linear codes meeting the Griesmer bound Journal of Combinatorics, Information and System Sciences 18 161–191

    Google Scholar 

  4. N. Hamada (1999) ArticleTitleThe nonexistence of quaternary linear codes with parameters [243,5,181], [248,185] and [240, 5,179] Ars Combinatoria 51 33–47

    Google Scholar 

  5. R. Hill (1992) Optimal linear codes C. Mitchell (Eds) Cryptography and Coding II. Oxford University Press Oxford 75–104

    Google Scholar 

  6. J. W. P. Hirschfeld (1998) Projective Geometries over Finite Fields Clarendon Press Oxford

    Google Scholar 

  7. I. N. Landjev T. Maruta (1999) ArticleTitleOn the minimum length of quaternary linear codes of dimension five Discrete Mathematics 202 145–161 Occurrence Handle10.1016/S0012-365X(98)00354-9

    Article  Google Scholar 

  8. T. Maruta (1996) ArticleTitleOn the non-existence of linear codes attaining the Griesmer bound Geometriae Dedicata 60 1–7 Occurrence Handle10.1007/BF00150863

    Article  Google Scholar 

  9. T. Maruta (2001) ArticleTitleOn the nonexistence of q-ary linear codes of dimension five Designs, Codes and Cryptography 22 165–177

    Google Scholar 

  10. T. Maruta I. N. Landjev A. Rousseva (2005) ArticleTitleOn the minimum size of some minihypers and related linear codes Designs, Codes and Cryptography 34 5–15

    Google Scholar 

  11. V. Pless W. C. Huffman (1998) Handbook of Coding Theory Elsevier Science B.V. Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Cheon.

Additional information

MSC 2000: 94B65, 94B05, 51E20, 05B25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheon, E.J., Kato, T. & Kim, S.J. Nonexistence of [n, 5, d] q Codes Attaining the Griesmer Bound for q4 −2q2 −2q+1 ≤ dq4−2q2q. Des Codes Crypt 36, 289–299 (2005). https://doi.org/10.1007/s10623-004-1720-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-004-1720-6

Keywords

Navigation