Abstract
We prove that there does not exist a [q4+q3−q2−3q−1, 5, q4−2q2−2q+1] q code over the finite field \(\mathbb{F}_q\) for q≥ 5. Using this, we prove that there does not exist a [g q (5, d), 5, d] q code with q4 −2q2 −2q +1 ≤ d ≤ q4 −2q2 −q for q≥ 5, where g q (k,d) denotes the Griesmer bound.
Similar content being viewed by others
References
A. Bruen (1992) ArticleTitlePolynomial multiplicities over finite fields and intersection sets Journal of Combinatorial Theory, Series A 60 19–33
N. Hamada (1993) ArticleTitleA characterization of some [n, k, d ; q] codes meeting the Griesmer bound using minihyper in a finite projective geometry Discrete Mathematics 116 229–268 Occurrence Handle10.1016/0012-365X(93)90404-H
N. Hamada (1993) ArticleTitleA survey of recent work on characterization of minihypers in PG(t,q) and nonbinary linear codes meeting the Griesmer bound Journal of Combinatorics, Information and System Sciences 18 161–191
N. Hamada (1999) ArticleTitleThe nonexistence of quaternary linear codes with parameters [243,5,181], [248,185] and [240, 5,179] Ars Combinatoria 51 33–47
R. Hill (1992) Optimal linear codes C. Mitchell (Eds) Cryptography and Coding II. Oxford University Press Oxford 75–104
J. W. P. Hirschfeld (1998) Projective Geometries over Finite Fields Clarendon Press Oxford
I. N. Landjev T. Maruta (1999) ArticleTitleOn the minimum length of quaternary linear codes of dimension five Discrete Mathematics 202 145–161 Occurrence Handle10.1016/S0012-365X(98)00354-9
T. Maruta (1996) ArticleTitleOn the non-existence of linear codes attaining the Griesmer bound Geometriae Dedicata 60 1–7 Occurrence Handle10.1007/BF00150863
T. Maruta (2001) ArticleTitleOn the nonexistence of q-ary linear codes of dimension five Designs, Codes and Cryptography 22 165–177
T. Maruta I. N. Landjev A. Rousseva (2005) ArticleTitleOn the minimum size of some minihypers and related linear codes Designs, Codes and Cryptography 34 5–15
V. Pless W. C. Huffman (1998) Handbook of Coding Theory Elsevier Science B.V. Netherlands
Author information
Authors and Affiliations
Corresponding author
Additional information
MSC 2000: 94B65, 94B05, 51E20, 05B25
Rights and permissions
About this article
Cite this article
Cheon, E.J., Kato, T. & Kim, S.J. Nonexistence of [n, 5, d] q Codes Attaining the Griesmer Bound for q4 −2q2 −2q+1 ≤ d≤ q4−2q2 −q. Des Codes Crypt 36, 289–299 (2005). https://doi.org/10.1007/s10623-004-1720-6
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10623-004-1720-6