Abstract
In an earlier paper the authors studied simplex codes of type α and β over \({\mathbb{Z}}_4\) and obtained some known binary linear and nonlinear codes as Gray images of these codes. In this correspondence, we study weight distributions of simplex codes of type α and β over \({\mathbb{Z}}_{{2^s}}.\) The generalized Gray map is then used to construct binary codes. The linear codes meet the Griesmer bound and a few non-linear codes are obtained that meet the Plotkin/Johnson bound. We also give the weight hierarchies of the first order Reed-Muller codes over \({\mathbb{Z}}_{2^{s}}.\) The above codes are also shown to satisfy the chain condition.
Similar content being viewed by others
References
A. E. Ashikhmin (1998) ArticleTitleOn generalized hamming weights for galois ring linear codes Designs, Codes and Cryptography 14 107–126
E. R. Berlekamp (1968) Algebraic Coding Theory McGraw-Hill New York
M. C. Bhandari M. K. Gupta A. K. Lal (1999) ArticleTitleOn ℤ4 simplex codes and their gray images, AAECC-13 Lecture Notes in Computer Science 1719 170–180
I. F. Blake (1972) ArticleTitleCodes over certain rings Inform. Control 20 396–404 Occurrence Handle10.1016/S0019-9958(72)90223-9
I. F. Blake (1975) ArticleTitleCodes over integer residue rings Inform. Control 29 295–300 Occurrence Handle10.1016/S0019-9958(75)80001-5
A. R. Calderbank N. J. A. Sloane (1995) ArticleTitleModular and p-adic cyclic codes Designs, Codes and Cryptography 6 21–35
C. Carlet (1998) ArticleTitleℤ \(_{2^{k}}\)-linear codes IEEE Trans. Inform. Theory 44 IssueID4 1543–1547 Occurrence Handle10.1109/18.681328
C. Carlet, One weight ℤ4-linear codes, In Int. Conf. on Coding, Crypto and related Areas, Mexico, Springer Lecture Notes in Computer Science, (1999) pp. 57–72.
I. Constantinescu, W. Heise and T. Honold Monomial extensions of isometries between codes over ℤ m , In Proc. Workshop ACCT’96, Sozopol, Bulgaria (1996) pp. 98–104.
J. A. Davis J. Jedwab (1999) ArticleTitlePeak to mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes IEEE Trans. Inform. Theory 45 IssueID7 2397–2417 Occurrence Handle10.1109/18.796380 Occurrence HandleMR1725127
M. Greferath S. E. Schmidt (1999) ArticleTitleGray isometries for finite chain rings and a nonlinear ternary (36, 3^12, 15) code IEEE Trans. Inform. Theory 45 IssueID7 2522–2524 Occurrence Handle10.1109/18.796395
A. Roger Hammons P. Vijay Kumar A. R. Calderbank N. J. A. Sloane Solé Patrick (1994) ArticleTitleThe ℤ4-linearity of Kerdock, Preparata, Goethals, and related codes IEEE Trans. Inform. Theory 40 IssueID2 301–319 Occurrence Handle10.1109/18.312154
T. Helleseth T. Klove V. I. Levenshtein Ø. Ytrehus (1995) ArticleTitleBounds on the minimum support weights IEEE Trans. Inform. Theory 41 IssueID2 432–439 Occurrence Handle10.1109/18.370144
T. Honold I. Landjev (1999) ArticleTitleLinearly representable codes over chain rings Abh. Math. Sem. Univ. Hamburg 69 187–203
T. Honold and I. Landjev, Linear codes over finite chain rings, Electronic Journal of Combinatorics, Vol. 7, No. 1 (2000) Research Paper 11.
I. Konstantinesku V. Khaıze (1997) ArticleTitleA metric for codes over residue class rings of integers Problemy Peredachi Informatsii 33 IssueID3 22–28
C. Y. Lee (1958) ArticleTitleSome properties of non-binary error-correcting codes IEEE Trans. Inform. Theory 4 77–82 Occurrence Handle10.1109/TIT.1958.1057446
F. J. MacWilliams, Error correcting codes for multi-level transmission, Bell System Technical Journal (1961) pp. 281–308.
F. J. MacWilliams and N. J. A. Sloane, Theory of Error-Correcting Codes, North Holland, Amsterdam (1977).
J. L. Massey and T. M. Mittelholzer, Convolutional codes over rings, In Proc. Joint Swedish-USSR Int. Workshop in Inform. Theory, Gotland, Sweden (1989) pp. 14–18.
A. A. Nechaev (1991) ArticleTitleKerdock code in a cyclic form Discrete Math. Appl. 1 365–384
A. A. Nechaev and A. S. Kuzmin, Linearly presentable codes, Proc. IEEE Int. Sympos. Inf. Theory Appl. (1996) pp. 31–34.
E. E. Nemirovskiy (1984) ArticleTitleCodes on residue class rings with multi-frequency phase telegraphy Radiotechnika I electronika 9 1745–1753
Ana Sàlàgean-Mandache (1999) ArticleTitleOn the isometries between ℤ \(_{p^{k}}\) and ℤ \(_p^{k}\) IEEE Trans. Inform. Theory 45 IssueID6 2146–2148 Occurrence Handle10.1109/18.782163
C. Satyanarayana (1979) ArticleTitleLee metric codes over integer residue rings IEEE Trans. Inform. Theory 25 IssueID2 250–254 Occurrence Handle10.1109/TIT.1979.1056017
Priti Shankar (1979) ArticleTitleOn BCH codes over arbitrary integer rings IEEE Trans. Inform. Theory 25 IssueID4 480–483 Occurrence Handle10.1109/TIT.1979.1056063
K. Shiromoto and L. Storme A griesmer bound for codes over finite quasi-frobenius rings In Proc. Workshop WCC 2001, Int. workshop in coding and Cryptography, January 8–12, 2001, Paris, France, Discr. Applied Math., Vol. 128 (2003) pp. 263–274.
Eugene Spiegel (1977) ArticleTitleCodes over ℤ m Inform. Control 35 48–51 Occurrence Handle10.1016/S0019-9958(77)90526-5
B. SundarRajan (1989) Transform Domain Study of Cyclic and Abelian Codes over Residue Class Integer Rings Dept. of Elec. Engg., IIT Kanpur Kanpur India
V. V. Vazirani H. Saran B. SundarRajan (1996) ArticleTitleAn efficient algorithm for constructing minimal trellises for codes over finite abelian groups IEEE Trans. Inform. Theory 42 IssueID6 1839–1854 Occurrence Handle10.1109/18.556679
G. Vega H. Tapia-Recillas (2003) ArticleTitleOn ℤ \(_{2^{s}}\)-linear and quaternary codes SIAM J. Discrete Math. 17 IssueID1 103–113 Occurrence Handle10.1137/S0895480101397219
Z. X. Wan (1997) Quaternary Codes World Scientific Singapore
K.Wasan Siri (1982) ArticleTitleOn codes over ℤ m IEEE Trans. Inform. Theory 28 IssueID1 117–120 Occurrence Handle10.1109/TIT.1982.1056433
K. Yang T. Helleseth P. V. Kumar A. G. Shangbhag (1996) ArticleTitleOn the weight hierarchy of Kerdock codes over ℤ4 IEEE Trans. Inform. Theory 42 IssueID5 1587–1593 Occurrence Handle10.1109/18.532905
Author information
Authors and Affiliations
Corresponding author
Additional information
A part of this paper is contained in his Ph.D. Thesis from IIT Kanpur, India
Rights and permissions
About this article
Cite this article
Gupta, M.K., Bhandari, M.C. & Lal, A.K. On Linear Codes over \({\mathbb{Z}}_{2^{s}}\). Des Codes Crypt 36, 227–244 (2005). https://doi.org/10.1007/s10623-004-1717-1
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10623-004-1717-1