Abstract
A lot of research has been done on the spectrum of the sizes of maximal partial spreads in PG(3,q) [P. Govaerts and L. Storme, Designs Codes and Cryptography, Vol. 28 (2003) pp. 51–63; O. Heden, Discrete Mathematics, Vol. 120 (1993) pp. 75–91; O. Heden, Discrete Mathematics, Vol. 142 (1995) pp. 97–106; O. Heden, Discrete Mathematics, Vol. 243 (2002) pp. 135–150]. In [A. Gács and T. Szőnyi, Designs Codes and Cryptography, Vol. 29 (2003) pp. 123–129], results on the spectrum of the sizes of maximal partial line spreads in PG(N,q), N≥ 5, are given. In PG(2n,q), n ≥ 3, the largest possible size for a partial line spread is q2n-1+q2n-3+...+q3+1. The largest size for the maximal partial line spreads constructed in [A. Gács and T. Szőnyi, Designs Codes and Cryptography, Vol. 29 (2003) pp. 123–129] is (q2n+1−q)/(q2−1)−q3+q2−2q+2. This shows that there is a non-empty interval of values of k for which it is still not known whether there exists a maximal partial line spread of size k in PG(2n,q). We now show that there indeed exists a maximal partial line spread of size k for every value of k in that interval when q ≥ 9.
Similar content being viewed by others
References
J. Barát A. Del Fra S. Innamorati L. Storme (2004) ArticleTitleMinimal blocking sets in PG(2,8) and maximal partial spreads in PG(3,8) Designs Codes and Cryptography 31 15–26
A. Beutelspacher (1975) ArticleTitlePartial spreads in finite projective spaces and partial designs Mathematische Zeitschrift 145 211–229
A. Blokhuis (1994) ArticleTitleOn the size of a blocking set in PG(2,p) Combinatorica 14 111–114 Occurrence Handle10.1007/BF01305953
A. Blokhuis L. Storme T. Szőnyi (1999) ArticleTitleLacunary polynomials, multiple blocking sets and Baer subplanes Journal of the London Mathematical Society (2) 60 321–332
S. Ferret L. Storme (2003) ArticleTitleResults on maximal partial spreads in PG(3,p3) and on related minihypers Designs Codes and Cryptography 29 105–122
A. Gács T. Szőonyi (2003) ArticleTitleOn maximal partial spreads in PG(n,q) Designs Codes and Cryptography 29 123–129
P. Govaerts L. Storme (2003) ArticleTitleOn a particular class of minihypers and its applications. I: The result for general q Designs Codes and Cryptography 28 51–63
P. Govaerts L. Storme (2002) ArticleTitleOn a particular class of minihypers and its applications. II: Improvements for q square Journal of Combinational Theory, Series A 97 369–393
Govaerts P., Heden O. and Storme L. On the spectrum of the size of maximal partial spreads in PG(3,q), q even. (In preparation).
O. Heden (1993) ArticleTitleMaximal partial spreads and the modular n-queen problem Discrete Mathematics 120 75–91 Occurrence Handle10.1016/0012-365X(93)90566-C
O. Heden (1995) ArticleTitleMaximal partial spreads and the modular n-queen problem II Discrete Mathematics 142 97–106 Occurrence Handle10.1016/0012-365X(94)00008-7
O. Heden (2001) ArticleTitleA maximal partial spread of size 45 in PG(3,7) Designs Codes and Cryptography 22 331–334
O. Heden (2002) ArticleTitleMaximal partial spreads and the modular n-queen problem III Discrete Mathematics 243 135–150 Occurrence Handle10.1016/S0012-365X(00)00464-7
J.W.P. Hirschfeld J.A. Thas (1991) General Galois Geometries Oxford University Press Oxford
K. Metsch L. Storme (1999) ArticleTitlePartial t-spreads in PG(2t+1,q) Designs Codes and Cryptography 18 199–216 Occurrence Handle10.1023/A:1008305824113
Author information
Authors and Affiliations
Corresponding author
Additional information
J. Eisfeld: Supported by the FWO Research Network WO.011.96N
P. Sziklai: The research of this author was partially supported by OTKA D32817, F030737, F043772, FKFP 0063/2001 and Magyary Zoltan grants. The third author is grateful for the hospitality of Ghent University.
Rights and permissions
About this article
Cite this article
Eisfeld, J., Storme, L. & Sziklai, P. On the Spectrum of the Sizes of Maximal Partial Line Spreads in PG(2n,q), n ≥ 3. Des Codes Crypt 36, 101–110 (2005). https://doi.org/10.1007/s10623-004-1165-y
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10623-004-1165-y