Abstract
Dilated convolutions, also known as atrous convolutions, have been widely explored in deep convolutional neural networks (DCNNs) for various dense prediction tasks. However, dilated convolutions suffer from the gridding artifacts, which hampers the performance. In this work, we propose two simple yet effective degridding methods by studying a decomposition of dilated convolutions. Unlike existing models, which explore solutions by focusing on a block of cascaded dilated convolutional layers, our methods address the gridding artifacts by smoothing the dilated convolution itself. In addition, we point out that the two degridding approaches are intrinsically related and define separable and shared (SS) operations, which generalize the proposed methods. We further explore SS operations in view of operations on graphs and propose the SS output layer, which is able to smooth the entire DCNNs by only replacing the output layer. We evaluate our degridding methods and the SS output layer thoroughly, and visualize the smoothing effect through effective receptive field analysis. Results show that our methods degridding yield consistent improvements on the performance of dense prediction tasks, while adding negligible amounts of extra training parameters. And the SS output layer improves the performance by 3.3% and contains only 9% training parameters of the original output layer.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation. pp 265–283
Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017a) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848
Chen LC, Papandreou G, Schroff F, Adam H (2017b) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587
Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 1251–1258
Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 3213–3223
Dai J, Li Y, He K, Sun J (2016) R-fcn: Object detection via region-based fully convolutional networks. In: Advances in neural information processing systems. pp 379–387
Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255
Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338
Gao H, Wang Z, Ji S (2018) Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1416–1424
Gao H, Yuan H, Wang Z, Ji S (2019) Pixel transposed convolutional networks. IEEE Trans Pattern Anal Mach Intell 42(5):1218–1227
Giusti A, Cireşan DC, Masci J, Gambardella LM, Schmidhuber J (2013) Fast image scanning with deep max-pooling convolutional neural networks. In: Proceedings of the IEEE international conference on image processing. IEEE, pp 4034–4038
Hamaguchi R, Fujita A, Nemoto K, Imaizumi T, Hikosaka S (2018) Effective use of dilated convolutions for segmenting small object instances in remote sensing imagery. In: Proceedings of the IEEE winter conference on applications of computer vision. IEEE, pp 1442–1450
Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems. pp 1024–1034
Hariharan B, Arbeláez P, Bourdev L, Maji S, Malik J (2011) Semantic contours from inverse detectors. In: Proceedings of the IEEE international conference on computer vision. IEEE, pp 991–998
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 770–778
Holschneider M, Kronland-Martinet R, Morlet J, Tchamitchian P (1990) A real-time algorithm for signal analysis with the help of the wavelet transform. In: Wavelets. Springer, pp 286–297
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S et al (2017) Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 7310–7311
Kalchbrenner N, Espeholt L, Simonyan K, Oord Avd, Graves A, Kavukcuoglu K (2016) Neural machine translation in linear time. arXiv preprint arXiv:1610.10099
Kalchbrenner N, van den Oord A, Simonyan K, Danihelka I, Vinyals O, Graves A, Kavukcuoglu K (2017) Video pixel networks. In: Proceedings of the international conference on machine learning. pp 1771–1779
Li H, Zhao R, Wang X (2014) Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification. arXiv preprint arXiv:1412.4526
Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Proceedings of the European conference on computer vision. Springer, pp 740–755
Liu W, Rabinovich A, Berg AC (2015) Parsenet: Looking wider to see better. arXiv preprint arXiv:1506.04579
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 3431–3440
Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effective receptive field in deep convolutional neural networks. In: Advances in neural information processing systems. pp 4898–4906
Mamalet F, Garcia C (2012) Simplifying convnets for fast learning. In: Proceedings of the international conference on artificial neural networks. Springer, pp 58–65
Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM (2017) Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 5115–5124
Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
Papandreou G, Kokkinos I, Savalle PA (2015) Modeling local and global deformations in deep learning: epitomic convolution, multiple instance learning, and sliding window detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 390–399
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, Lecun Y (2014) Overfeat: Integrated recognition, localization and detection using convolutional networks. In: Proceedings of the international conference on learning representations
Shensa MJ (1992) The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans Signal Process 40(10):2464–2482
Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: Proceedings of the international conference on learning representations
Wang Z, Ji S (2018) Smoothed dilated convolutions for improved dense prediction. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2486–2495
Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G (2018) Understanding convolution for semantic segmentation. In: Proceedings of the IEEE winter conference on applications of computer vision. IEEE, pp 1451–1460
Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: Proceedings of the international conference on learning representations
Yu F, Koltun V, Funkhouser T (2017) Dilated residual networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 472–480
Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 2881–2890
Ziegler T, Fritsche M, Kuhn L, Donhauser K (2019) Efficient smoothing of dilated convolutions for image segmentation. arXiv preprint arXiv:1903.07992
Acknowledgements
This work was supported in part by National Science Foundation grant IIS-1633359 and Defense Advanced Research Projects Agency grant N66001-17-2-4031.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Pierre Baldi.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, Z., Ji, S. Smoothed dilated convolutions for improved dense prediction. Data Min Knowl Disc 35, 1470–1496 (2021). https://doi.org/10.1007/s10618-021-00765-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10618-021-00765-5