A parallel splitting ALM-based algorithm for separable convex programming | Computational Optimization and Applications
Skip to main content

A parallel splitting ALM-based algorithm for separable convex programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The augmented Lagrangian method (ALM) provides a benchmark for solving the canonical convex optimization problem with linear constraints. The direct extension of ALM for solving the multiple-block separable convex minimization problem, however, is proved to be not necessarily convergent in the literature. It has thus inspired a number of ALM-variant algorithms with provable convergence. This paper presents a novel parallel splitting method for the multiple-block separable convex optimization problem with linear equality constraints, which enjoys a larger step size compared with the existing parallel splitting methods. We first show that a fully Jacobian decomposition of the regularized ALM can contribute a descent direction yielding the contraction of proximity to the solution set; then, the new iterate is generated via a simple correction step with an ignorable computational cost. We establish the convergence analysis for the proposed method, and then demonstrate its numerical efficiency by solving an application problem arising in statistical learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bai, J., Li, J., Xu, F., Zhang, H.: Generalized symmetric ADMM for separable convex optimization. Comput. Optim. Appl. 70(1), 129–170 (2018). https://doi.org/10.1007/s10589-017-9971-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, A.: First-Order Methods in Optimization, vol. 25. SIAM, Philadelphia (2017)

    Book  Google Scholar 

  3. Blum, E., Oettli, W.: Mathematische Optimierung. Grundlagen und Verfahren. Ökonometrie und Unternehmensforschung. Springer, Berlin (1975)

    Book  Google Scholar 

  4. Bose, N., Boo, K.: High-resolution image reconstruction with multisensors. Int. J. Imaging Syst. Technol. 9(4), 294–304 (1998) https://doi.org/10.1002/(SICI)1098-1098(1998)9:4%3c294::AID-IMA11%3e3.0.CO;2-X

    Article  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  6. Chandrasekaran, V., Parrilo, P.A., Willsky, A.S.: Latent variable graphical model selection via convex optimization. Ann. Stat. 40(4), 1935–1967 (2012). https://doi.org/10.1214/11-AOS949

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1–2), 57–79 (2016). https://doi.org/10.1007/s10107-014-0826-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  9. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976). https://doi.org/10.1016/0898-1221(76)90003-1

    Article  MATH  Google Scholar 

  10. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1984)

    Book  Google Scholar 

  11. Hager, W.W., Zhang, H.: Convergence rates for an inexact ADMM applied to separable convex optimization. Comput. Optim. Appl. 77(3), 729–754 (2020). https://doi.org/10.1007/s10589-017-9971-0

    Article  MathSciNet  MATH  Google Scholar 

  12. He, B.: My 20 years research on alternating directions method of multipliers. Oper. Res. Trans. 22, 1–31 (2018)

    MathSciNet  MATH  Google Scholar 

  13. He, B.: Study on the splitting methods for separable convex optimization in a unified algorithmic framework. Anal. Theory Appl. 36, 262–282 (2020). https://doi.org/10.4208/ata.OA-SU13

    Article  MathSciNet  MATH  Google Scholar 

  14. He, B., Hou, L., Yuan, X.: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming. SIAM J. Optim. 25(4), 2274–2312 (2015). https://doi.org/10.1137/130922793

    Article  MathSciNet  MATH  Google Scholar 

  15. He, B., Ma, F., Yuan, X.: Optimal proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems. IMA J. Numer. Anal. 40(2), 1188–1216 (2020). https://doi.org/10.1093/imanum/dry092

    Article  MathSciNet  MATH  Google Scholar 

  16. He, B., Ma, F., Yuan, X.: Optimally linearizing the alternating direction method of multipliers for convex programming. Comput. Optim. Appl. 75(2), 361–388 (2020). https://doi.org/10.1007/s10589-019-00152-3

    Article  MathSciNet  MATH  Google Scholar 

  17. He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012). https://doi.org/10.1137/110822347

    Article  MathSciNet  MATH  Google Scholar 

  18. He, B., Tao, M., Yuan, X.: A splitting method for separable convex programming. IMA J. Numer. Anal. 35(1), 394–426 (2015). https://doi.org/10.1093/imanum/drt060

    Article  MathSciNet  MATH  Google Scholar 

  19. He, B., Tao, M., Yuan, X.: Convergence rate analysis for the alternating direction method of multipliers with a substitution procedure for separable convex programming. Math. Oper. Res. 42(3), 662–691 (2017). https://doi.org/10.1287/moor.2016.0822

    Article  MathSciNet  MATH  Google Scholar 

  20. He, B., Xu, S., Yuan, J.: Indefinite linearized augmented Lagrangian method for convex optimization with linear inequality constraints. arXiv preprint arXiv:2105.02425 (2021)

  21. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012). https://doi.org/10.1137/100814494

    Article  MathSciNet  MATH  Google Scholar 

  22. He, B., Yuan, X.: On the \(O(1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012). https://doi.org/10.1137/110836936

    Article  MathSciNet  MATH  Google Scholar 

  23. He, B., Yuan, X.: A class of ADMM-based algorithms for three-block separable convex programming. Comput. Optim. Appl. 70(3), 791–826 (2018). https://doi.org/10.1007/s10589-018-9994-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969). https://doi.org/10.1007/BF00927673

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiwiel, K.C., Rosa, C.H., Ruszczynski, A.: Proximal decomposition via alternating linearization. SIAM J. Optim. 9(3), 668–689 (1999). https://doi.org/10.1137/S1052623495288064

    Article  MathSciNet  MATH  Google Scholar 

  26. Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 4(R3), 154–158 (1970)

    MATH  Google Scholar 

  27. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014). https://doi.org/10.1561/2400000003

    Article  Google Scholar 

  28. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)

    Article  Google Scholar 

  29. Powell, M.J.: A Method for Nonlinear Constraints in Minimization Problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  30. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976). https://doi.org/10.1137/0314056

    Article  MathSciNet  MATH  Google Scholar 

  31. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Visual Commun. Image Represent. 21(3), 193–199 (2010). https://doi.org/10.1016/j.jvcir.2009.10.006

    Article  Google Scholar 

  32. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21(1), 57–81 (2011). https://doi.org/10.1137/100781894

    Article  MathSciNet  MATH  Google Scholar 

  33. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. 67(1), 91–108 (2005). https://doi.org/10.1111/j.1467-9868.2005.00490.x

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut approaches. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2217–2224. IEEE (2010)

  35. Yuan, J., Bae, E., Tai, X.C., Boykov, Y.: A continuous max-flow approach to Potts model. In: Computer Vision-ECCV 2010, pp. 379–392. Springer (2010)

  36. Yuan, J., Fenster, A.: Modern convex optimization to medical image analysis. arXiv preprint arXiv:1809.08734 (2018)

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant No.11871029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjie Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., He, B. A parallel splitting ALM-based algorithm for separable convex programming. Comput Optim Appl 80, 831–851 (2021). https://doi.org/10.1007/s10589-021-00321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00321-3

Keywords

Mathematics Subject Classification