Abstract
We consider a cutting-plane algorithm for solving mixed-integer semidefinite optimization (MISDO) problems. In this algorithm, the positive semidefinite (psd) constraint is relaxed, and the resultant mixed-integer linear optimization problem is solved repeatedly, imposing at each iteration a valid inequality for the psd constraint. We prove the convergence properties of the algorithm. Moreover, to speed up the computation, we devise a branch-and-cut algorithm, in which valid inequalities are dynamically added during a branch-and-bound procedure. We test the computational performance of our cutting-plane and branch-and-cut algorithms for three types of MISDO problem: random instances, computing restricted isometry constants, and robust truss topology design. Our experimental results demonstrate that, for many problem instances, our branch-and-cut algorithm delivered superior performance compared with general-purpose MISDO solvers in terms of computational efficiency and stability.
Similar content being viewed by others
References
Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)
Aloise, D., Hansen, P.: A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering. Pesqui. Oper. 29(3), 503–516 (2009)
Anjos, M.F., Ghaddar, B., Hupp, L., Liers, F., Wiegele, A.: Solving \(k\)-way graph partitioning problems to optimality: the impact of semidefinite relaxations and the bundle method. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 355–386. Springer, Berlin (2013)
Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison. Math. Program. Comput. 4(3), 275–306 (2012)
Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)
Benson, S.J., Ye, Y., Zhang, X.: Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10(2), 443–461 (2000)
Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7(4), 991–1016 (1997)
Bertsimas, D., Dunning, I., Lubin, M.: Reformulation versus cutting-planes for robust optimization. Comput. Manag. Sci. 13(2), 195–217 (2016)
Bertsimas, D., King, A.: Logistic regression: from art to science. Stat. Sci. 32(3), 367–384 (2017)
Braun, G., Fiorini, S., Pokutta, S., Steurer, D.: Approximation limits of linear programs (beyond hierarchies). Math. Oper. Res. 40(3), 756–772 (2015)
Cerveira, A., Agra, A., Bastos, F., Gromicho, J.: A new Branch and Bound method for a discrete truss topology design problem. Comput. Optim. Appl. 54(1), 163–187 (2013)
Czyzyk, J., Mesnier, M.P., Moré, J.J.: The NEOS server. IEEE Comput. Sci. Eng. 5(3), 68–75 (1998)
Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)
Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1–3), 327–349 (1994)
Foucart, S., Lai, M.J.: Sparsest solutions of underdetermined linear systems via \(\ell _q\)-minimization for \(0 < q \le 1\). Appl. Comput. Harmon. Anal. 26(3), 395–407 (2009)
Gally, T., Pfetsch, M. E.: Computing restricted isometry constants via mixed-integer semidefinite programming. Optimization Online, http://www.optimization-online.org/DB_HTML/2016/04/5395.html (2016)
Gally, T., Pfetsch, M.E., Ulbrich, S.: A framework for solving mixed-integer semidefinite programs. Optim. Methods Softw. 33(3), 594–632 (2018)
Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R. L., Hendel, G., Hojny, C., Koch, T., Miltenberger, M., Müller, B.: The SCIP optimization suite 5.0. Optimization Online, http://www.optimization-online.org/DB_HTML/2017/12/6385.html (2017)
Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)
Joshi, S., Boyd, S.: Sensor selection via convex optimization. IEEE Trans. Signal Process. 57(2), 451–462 (2009)
Kelley Jr., J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)
Konno, H., Gotoh, J., Uno, T., Yuki, A.: A cutting plane algorithm for semi-definite programming problems with applications to failure discriminant analysis. J. Comput. Appl. Math. 146(1), 141–154 (2002)
Konno, H., Kawadai, N., Tuy, H.: Cutting plane algorithms for nonlinear semi-definite programming problems with applications. J. Glob. Optim. 25(2), 141–155 (2003)
Krishnan, K., Mitchell, J.E.: A unifying framework for several cutting plane methods for semidefinite programming. Optim. Methods Softw. 21(1), 57–74 (2006)
Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the 2004 IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289 (2004)
Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Polyhedral approximation in mixed-integer convex optimization. Math. Program. 172(1), 139–168 (2018)
Manousakis, N. M., Korres, G. N.: Semidefinite programming for optimal placement of PMUs with channel limits considering pre-existing SCADA and PMU measurements. In: Proceedings of the 2016 Power Systems Computation Conference, pp. 1–7 (2016)
Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95(2), 407–430 (2003)
Noyan, N., Balcik, B., Atakan, S.: A stochastic optimization model for designing last mile relief networks. Trans. Sci. 50(3), 1092–1113 (2015)
Peng, J., Xia, Y.: A new theoretical framework for k-means-type clustering. In: Chu, W., Young Lin, T. (eds.) Foundations and Advances in Data Mining, pp. 79–96. Springer, Berlin (2005)
Philipp, A., Ulbrich, S., Cheng, Y., Pesavento, M.: Multiuser downlink beamforming with interference cancellation using a SDP-based branch-and-bound algorithm. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 7724–7728 (2014)
Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)
Rendl, F.: Semidefinite relaxations for integer programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008, pp. 687–726. Springer, Berlin (2010)
Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121(2), 307–335 (2010)
Rowe, C., Maciejowski, J.: An efficient algorithm for mixed integer semidefinite optimisation. In: Proceedings of the 2003 American Control Conference, vol. 6, pp. 4730–4735 (2003)
Sotirov, R.: SDP relaxations for some combinatorial optimization problems. In: Anjos, M., Lasserre, J. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 795–819. Springer, Boston (2012)
Tamura, R., Kobayashi, K., Takano, Y., Miyashiro, R., Nakata, K., Matsui, T.: Best subset selection for eliminating multicollinearity. J. Oper. Res. Soc. Jpn. 60(3), 321–336 (2017)
Taylor, J.A., Luangsomboon, N., Fooladivanda, D.: Allocating sensors and actuators via optimal estimation and control. IEEE Trans. Control Syst. Technol. 25(3), 1060–1067 (2017)
Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)
Torchio, M., Magni, L., Raimondo, D.M.: A mixed integer SDP approach for the optimal placement of energy storage devices in power grids with renewable penetration. In: Proceedings of the American Control Conference, pp. 3892–3897 (2015)
Tóth, S.F., McDill, M.E., Könnyü, N., George, S.: Testing the use of lazy constraints in solving area-based adjacency formulations of harvest scheduling models. For. Sci. 59(2), 157–176 (2013)
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
Williams, H.P.: Model Building in Mathematical Programming. Wiley, Hoboken (2013)
Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995)
Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18(4), 491–505 (2003)
Yokoyama, R., Shinano, Y., Taniguchi, S., Ohkura, M., Wakui, T.: Optimization of energy supply systems by MILP branch and bound method in consideration of hierarchical relationship between design and operation. Energy Convers. Manag. 92, 92–104 (2015)
Yonekura, K., Kanno, Y.: Global optimization of robust truss topology via mixed integer semidefinite programming. Optim. Eng. 11(3), 355–379 (2010)
Zhang, Y., Shen, S., Erdogan, S.A.: Solving 0–1 semidefinite programs for distributionally robust allocation of surgery blocks. Optim. Lett. 12(7), 1503–1521 (2018)
Acknowledgements
The authors would like to thank Mirai Tanaka for valuable comments on MISDO formulations.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kobayashi, K., Takano, Y. A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems. Comput Optim Appl 75, 493–513 (2020). https://doi.org/10.1007/s10589-019-00153-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-019-00153-2