A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems | Computational Optimization and Applications Skip to main content

Advertisement

Log in

A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider a cutting-plane algorithm for solving mixed-integer semidefinite optimization (MISDO) problems. In this algorithm, the positive semidefinite (psd) constraint is relaxed, and the resultant mixed-integer linear optimization problem is solved repeatedly, imposing at each iteration a valid inequality for the psd constraint. We prove the convergence properties of the algorithm. Moreover, to speed up the computation, we devise a branch-and-cut algorithm, in which valid inequalities are dynamically added during a branch-and-bound procedure. We test the computational performance of our cutting-plane and branch-and-cut algorithms for three types of MISDO problem: random instances, computing restricted isometry constants, and robust truss topology design. Our experimental results demonstrate that, for many problem instances, our branch-and-cut algorithm delivered superior performance compared with general-purpose MISDO solvers in terms of computational efficiency and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://www.opt.tu-darmstadt.de/scipsdp/

  2. https://yalmip.github.io/solver/cutsdp/

  3. https://neos-server.org/neos/

  4. http://scip.zib.de/

  5. http://www.mcs.anl.gov/hs/software/DSDP/

  6. http://www.gurobi.com/

References

  1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aloise, D., Hansen, P.: A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering. Pesqui. Oper. 29(3), 503–516 (2009)

    Article  Google Scholar 

  3. Anjos, M.F., Ghaddar, B., Hupp, L., Liers, F., Wiegele, A.: Solving \(k\)-way graph partitioning problems to optimality: the impact of semidefinite relaxations and the bundle method. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 355–386. Springer, Berlin (2013)

    Chapter  MATH  Google Scholar 

  4. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison. Math. Program. Comput. 4(3), 275–306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  6. Benson, S.J., Ye, Y., Zhang, X.: Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10(2), 443–461 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7(4), 991–1016 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsimas, D., Dunning, I., Lubin, M.: Reformulation versus cutting-planes for robust optimization. Comput. Manag. Sci. 13(2), 195–217 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bertsimas, D., King, A.: Logistic regression: from art to science. Stat. Sci. 32(3), 367–384 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braun, G., Fiorini, S., Pokutta, S., Steurer, D.: Approximation limits of linear programs (beyond hierarchies). Math. Oper. Res. 40(3), 756–772 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cerveira, A., Agra, A., Bastos, F., Gromicho, J.: A new Branch and Bound method for a discrete truss topology design problem. Comput. Optim. Appl. 54(1), 163–187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Czyzyk, J., Mesnier, M.P., Moré, J.J.: The NEOS server. IEEE Comput. Sci. Eng. 5(3), 68–75 (1998)

    Article  Google Scholar 

  13. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1–3), 327–349 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Foucart, S., Lai, M.J.: Sparsest solutions of underdetermined linear systems via \(\ell _q\)-minimization for \(0 < q \le 1\). Appl. Comput. Harmon. Anal. 26(3), 395–407 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gally, T., Pfetsch, M. E.: Computing restricted isometry constants via mixed-integer semidefinite programming. Optimization Online, http://www.optimization-online.org/DB_HTML/2016/04/5395.html (2016)

  17. Gally, T., Pfetsch, M.E., Ulbrich, S.: A framework for solving mixed-integer semidefinite programs. Optim. Methods Softw. 33(3), 594–632 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R. L., Hendel, G., Hojny, C., Koch, T., Miltenberger, M., Müller, B.: The SCIP optimization suite 5.0. Optimization Online, http://www.optimization-online.org/DB_HTML/2017/12/6385.html (2017)

  19. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  20. Joshi, S., Boyd, S.: Sensor selection via convex optimization. IEEE Trans. Signal Process. 57(2), 451–462 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kelley Jr., J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Konno, H., Gotoh, J., Uno, T., Yuki, A.: A cutting plane algorithm for semi-definite programming problems with applications to failure discriminant analysis. J. Comput. Appl. Math. 146(1), 141–154 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Konno, H., Kawadai, N., Tuy, H.: Cutting plane algorithms for nonlinear semi-definite programming problems with applications. J. Glob. Optim. 25(2), 141–155 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krishnan, K., Mitchell, J.E.: A unifying framework for several cutting plane methods for semidefinite programming. Optim. Methods Softw. 21(1), 57–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the 2004 IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289 (2004)

  26. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Polyhedral approximation in mixed-integer convex optimization. Math. Program. 172(1), 139–168 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Manousakis, N. M., Korres, G. N.: Semidefinite programming for optimal placement of PMUs with channel limits considering pre-existing SCADA and PMU measurements. In: Proceedings of the 2016 Power Systems Computation Conference, pp. 1–7 (2016)

  28. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95(2), 407–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Noyan, N., Balcik, B., Atakan, S.: A stochastic optimization model for designing last mile relief networks. Trans. Sci. 50(3), 1092–1113 (2015)

    Article  Google Scholar 

  30. Peng, J., Xia, Y.: A new theoretical framework for k-means-type clustering. In: Chu, W., Young Lin, T. (eds.) Foundations and Advances in Data Mining, pp. 79–96. Springer, Berlin (2005)

    Chapter  Google Scholar 

  31. Philipp, A., Ulbrich, S., Cheng, Y., Pesavento, M.: Multiuser downlink beamforming with interference cancellation using a SDP-based branch-and-bound algorithm. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 7724–7728 (2014)

  32. Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)

    Article  Google Scholar 

  33. Rendl, F.: Semidefinite relaxations for integer programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008, pp. 687–726. Springer, Berlin (2010)

    Chapter  MATH  Google Scholar 

  34. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121(2), 307–335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rowe, C., Maciejowski, J.: An efficient algorithm for mixed integer semidefinite optimisation. In: Proceedings of the 2003 American Control Conference, vol. 6, pp. 4730–4735 (2003)

  36. Sotirov, R.: SDP relaxations for some combinatorial optimization problems. In: Anjos, M., Lasserre, J. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 795–819. Springer, Boston (2012)

    Chapter  MATH  Google Scholar 

  37. Tamura, R., Kobayashi, K., Takano, Y., Miyashiro, R., Nakata, K., Matsui, T.: Best subset selection for eliminating multicollinearity. J. Oper. Res. Soc. Jpn. 60(3), 321–336 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Taylor, J.A., Luangsomboon, N., Fooladivanda, D.: Allocating sensors and actuators via optimal estimation and control. IEEE Trans. Control Syst. Technol. 25(3), 1060–1067 (2017)

    Article  Google Scholar 

  39. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Torchio, M., Magni, L., Raimondo, D.M.: A mixed integer SDP approach for the optimal placement of energy storage devices in power grids with renewable penetration. In: Proceedings of the American Control Conference, pp. 3892–3897 (2015)

  41. Tóth, S.F., McDill, M.E., Könnyü, N., George, S.: Testing the use of lazy constraints in solving area-based adjacency formulations of harvest scheduling models. For. Sci. 59(2), 157–176 (2013)

    Google Scholar 

  42. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Williams, H.P.: Model Building in Mathematical Programming. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  44. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995)

    Article  Google Scholar 

  45. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18(4), 491–505 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yokoyama, R., Shinano, Y., Taniguchi, S., Ohkura, M., Wakui, T.: Optimization of energy supply systems by MILP branch and bound method in consideration of hierarchical relationship between design and operation. Energy Convers. Manag. 92, 92–104 (2015)

    Article  Google Scholar 

  47. Yonekura, K., Kanno, Y.: Global optimization of robust truss topology via mixed integer semidefinite programming. Optim. Eng. 11(3), 355–379 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, Y., Shen, S., Erdogan, S.A.: Solving 0–1 semidefinite programs for distributionally robust allocation of surgery blocks. Optim. Lett. 12(7), 1503–1521 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mirai Tanaka for valuable comments on MISDO formulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kobayashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Takano, Y. A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems. Comput Optim Appl 75, 493–513 (2020). https://doi.org/10.1007/s10589-019-00153-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00153-2

Keywords

Navigation