Analysis on Newton projection method for the split feasibility problem | Computational Optimization and Applications
Skip to main content

Analysis on Newton projection method for the split feasibility problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, based on a merit function of the split feasibility problem (SFP), we present a Newton projection method for solving it and analyze the convergence properties of the method. The merit function is differentiable and convex. But its gradient is a linear composite function of the projection operator, so it is nonsmooth in general. We prove that the sequence of iterates converges globally to a solution of the SFP as long as the regularization parameter matrix in the algorithm is chosen properly. Especially, under some local assumptions which are necessary for the case where the projection operator is nonsmooth, we prove that the sequence of iterates generated by the algorithm superlinearly converges to a regular solution of the SFP. Finally, some numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byrne, C.L.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yang, Q.Z.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Qu, B., Xiu, N.H.: A new halfspace-relaxation projection method for the split feasibility problem. Linear Algebra Appl. 428(5–6), 1218–1229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrne, C.L.: Bregman–Legendre mulidistance projection algorithms for convex feasibility and optimization. In: Butnairu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 87–100. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  6. Liu, B.H., Qu, B., Zheng, N.: A successive projection algorithm for solving the multiple-sets split feasibility problem. Numer. Funct. Anal. Optim. 35, 1459–1466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Qu, B., Xiu, N.H.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655–1665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, C.Y., Xiu, N.H.: Convergence of the gradient projection method for generalized convex minimization. Comput. Optim. Appl. 16, 111–120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byrne, C.L.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xiu, N.H., Zhang, J.Z.: Some recent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 152, 559–585 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ito, K.F., Kunisch, K.: On a semi-smooth Newton method and its globalization. Math. Program. 118(2), 347–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ito, K.F., Kunisch, K.: Applications of semi-smooth Newton methods to variational inequalities. Int. Ser. Numer. Math. 155, 175–192 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kanzow, C., Klug, A.: An interior-point affine scaling trust region method for semismooth equations with box constraints. Comput. Optim. Appl. 37, 329–353 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qi, H.D.: A regularized smoothing Newton method for box constrained variational inequality problems with P\(_0\)-functions. SIAM J. Optim. 10, 315–330 (1999)

    Article  MATH  Google Scholar 

  17. Sun, D., Womersley, R.S., Qi, H.D.: A feasible semismooth asymptocially Newton method for mixed complementarity problems. Math. Program. 94, 167–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huyer, W., Neumaier, A.: A new exact penalty function. SIAM J. Optim. 13(4), 1141–1158 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, D.H., Fukushima, M.: Globally convergent Broyden-like methods for semismooth equations and applications to VIP, NCP and MCP. Ann. Oper. Res. 103, 71–79 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, D., Qi, L.: Solving variational inequality problems via smoothing-nonsmooth reformulations. J. Comput. Appl. Math. 129, 37–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C.Y., Liu, Q., Ma, C.: Smoothing SQP algorithm for semismooth equations with box constraints. Comput. Optim. Appl. 55, 399–425 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhou, Z.G., Yu, B.: A smoothing homotopy method for variational inequality problems on polyhedral convex sets. J. Glob. Optim. 58, 151–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Armand, P., Benoist, J., Omheni, R., Pateloup, V.: Study of a primal-dual algorithm for equality constrained minimization. Comput. Optim. Appl. 59, 405–433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kanzow, C., Fukushima, M.: Theoretical and numerical investgation of the D-gap function for box constrained variational inequalities. Math. Program. 83, 55–87 (1998)

    MATH  Google Scholar 

  25. Liu, J.M.: Linear stability of generalized equation part I: basic theory. Math. Oper. Res. 3, 706–720 (1994)

    Article  MATH  Google Scholar 

  26. Liu, J.M.: Linear stability of generalized equation part II: applications to nonlinear programming. Math. Oper. Res. 3, 721–742 (1994)

    Article  MATH  Google Scholar 

  27. Liu, J.M.: Strong stability in variational inequalities. SIAM J. Control Optim. 33, 725–749 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peng, J.M., Fukushima, M.: A hybrid Newton method for solving the variational inequality problem via the D-gap function. Math. Program. 86, 367–386 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Solodov, M.V., Svaiter, B.F.: A trully globally convergent Newton-type method for the monotone nonlinear complementarity problem. SIAM J. Optim. 10(2), 605–625 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, D., Fukushima, M., Qi, L.: A computable generalized Hessian of the D-gap function and Newton-type methods for variational inequality problems. In: Ferris, M.C., Pang, J.S. (eds.) Complementarity and Variational Problems: State of the Art, pp. 452–472. SIAM, Philadelphia (1997)

    Google Scholar 

  32. Taji, K., Fukushima, M., Ibaraki, T.: A globally convergent Newton method for solving strongly monotone variational inequalities. Math. Program. 58, 369–383 (1993)

    Article  MATH  Google Scholar 

  33. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  34. Hiriart-Urruty, J.B., Strodiot, J.J., Hien Nguyen, V.: Generalized Hessian matrix and second-order optimality conditions for problems with \(C^{1,1}\) data. Appl. Math. Optim. 11, 43–56 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mifflin, M.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 957–972 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Harker, P., Pang, J.S.: Finite-demensional variational inequalities and complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48(1), 161–220 (1990)

    Article  MATH  Google Scholar 

  37. Qu, B., Liu, B.H., Zheng, N.: On the computation of the step-size for the CQ-like algorithms for the split feasibility problem. Appl. Math. Comput. 262, 218–223 (2015)

    MathSciNet  Google Scholar 

  38. Zhao, J.L., Zhang, Y.J., Yang, Q.Z.: Modified projection methods for the split feasibility problem and the multiple-sets split feasibility problem. Appl. Math. Comput. 219, 1644–1653 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the National Natural Science Foundation of China (11271226, 10971118, 11271233), and the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2012SF027). The authors would like to thank two anonymous referees for their helpful suggestions on the earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, B., Wang, C. & Xiu, N. Analysis on Newton projection method for the split feasibility problem. Comput Optim Appl 67, 175–199 (2017). https://doi.org/10.1007/s10589-016-9884-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9884-3

Keywords

Mathematics Subject Classification